-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
179 lines (144 loc) · 5.58 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import random
import numpy as np
from collections import deque
from snake_pygame import SnakeGameAI, Direction, Point
from model import Linear_QNet, QTrainer
from helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self):
self.n_games = 0 #number of games played
self.epsilon = 0 #randomness
self.gamma = 0.9 #discount rate
self.memory = deque(maxlen=MAX_MEMORY) #if exceeded popleft()
self.model = Linear_QNet(11, 256, 3) #deep learning model
self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma)
def get_state(self, game):
"""Get the current state of the snake from snake_pygame
Args:
game: SnakeGameAI class
Returns:
numpy array of binary values (11 values):
[danger straight, danger right, danger left,
direction left, direction right, direction up, direction down,
food left, food right, food up, food down]
"""
head = game.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
#Danger straight
(dir_r and game.is_collision(point_r)) or
(dir_l and game.is_collision(point_l)) or
(dir_u and game.is_collision(point_u)) or
(dir_d and game.is_collision(point_d)),
#Danger right
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)) or
(dir_l and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
#Danger left
(dir_d and game.is_collision(point_r)) or
(dir_u and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)),
#Move direction
dir_l,
dir_r,
dir_u,
dir_d,
#Food location
game.food.x < game.head.x, #food left
game.food.x > game.head.x, #food right
game.food.y < game.head.y, #food up
game.food.y > game.head.y #food down
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
"""Remeber the args for learning model
store as 1 tuple
"""
self.memory.append((state, action, reward, next_state, done)) # popleft if MAX_MEMORY is reached
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE) # list of tuples
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
for state, action, reward, next_state, done in mini_sample:
self.trainer.train_step(state, action, reward, next_state, done)
def train_short_memory(self, state, action, reward, next_state, done):
"""Remeber one game step
Store batch for use in long memory
"""
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state):
"""Get action based on state
Args:
state (function): current state
Returns:
action: final move based on model
"""
#random moves: tradeoff exploration / exploitation
self.epsilon = 100 - self.n_games
final_move = [0,0,0]
if random.randint(0, 200) < self.epsilon:
#After 100 games the moves will no longer be random
move = random.randint(0, 2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train():
"""
Train snake to improve at snake game
Game shown in pygame
Progess ploted via matplotlib
"""
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = Agent()
game = SnakeGameAI()
while True:
#get old state
state_old = agent.get_state(game)
#get move
final_move = agent.get_action(state_old)
#perform move and get new state
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
#train short memory
agent.train_short_memory(state_old, final_move, reward, state_new, done)
#remember
agent.remember(state_old, final_move, reward, state_new, done)
if done:
# train long memory, plot result
game.reset()
agent.n_games += 1
agent.train_long_memory()
if score > record:
record = score
agent.model.save()
print('Game', agent.n_games, 'Score', score, 'Record:', record)
plot_scores.append(score)
total_score += score
mean_score = total_score / agent.n_games
plot_mean_scores.append(mean_score)
plot(plot_scores, plot_mean_scores)
if __name__ == '__main__':
train()