-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_inpainting.py
325 lines (251 loc) · 12.7 KB
/
train_inpainting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import argparse
import torch
import torch.nn.functional as F
import math
import random
from pytorch_lightning import LightningModule, Trainer
from torch.utils.data import DataLoader
from dataloaders.single_img_data import SinImgDataset
from model.Inpainter import InpaintingModule
from torchvision.utils import save_image
from utils_for_train import VGGPerceptualLoss
from model.VitExtractor import VitExtractor
from utils_for_train import tensor_to_depth
from warpback.utils import (
RGBDRenderer,
image_to_tensor,
transformation_from_parameters,
)
from pytorch_lightning import seed_everything
class TrainInpaintingModule(LightningModule):
def __init__(self, opt):
super(TrainInpaintingModule, self).__init__()
self.opt = opt
self.loss = []
W, H = self.opt.width, self.opt.height
self.save_base_dir = f'ckpts/{opt.ckpt_path}'
if self.opt.resume:
self.inpaint_module = InpaintingModule()
self.inpaint_module.load_state_dict(torch.load(f'ckpts/{self.opt.ckpt_path}/inpaint_latest.pt'), strict=True)
else:
self.inpaint_module = InpaintingModule()
self.models = [self.inpaint_module.cuda()]
# for training
self.extrapolate_times = self.opt.extrapolate_times
self.train_dataset = SinImgDataset(img_path=self.opt.img_path, width=W, height=H, repeat_times=1)
if self.extrapolate_times == 3: # extend w = 3 * w
self.center_top_left = (self.opt.height, self.opt.width)
elif self.extrapolate_times == 2: # extend w = 2 * w
self.center_top_left = (self.opt.height//2, self.opt.width//2)
elif self.extrapolate_times == 1:
self.center_top_left = (0, 0)
self.K = torch.tensor([
[0.58, 0, 0.5],
[0, 0.58, 0.5],
[0, 0, 1]
])
with torch.no_grad():
if self.extrapolate_times == 1:
ref_img = image_to_tensor(self.save_base_dir + "/" + "canvas.png", unsqueeze=False) # [3,h,w]
ref_img = ref_img.unsqueeze(0).cuda()
if ref_img.shape[1] == 4:
ref_img = ref_img[:,:3,:,:]
ref_depth = tensor_to_depth(ref_img)
save_image(ref_depth[0,0,...], self.save_base_dir + "/" + "canvas_depth.png")
else:
ref_img, ref_depth = torch.load(self.save_base_dir + "/" + "extrapolate_RGBDs.pkl")
ref_depth = (ref_depth - ref_depth.min())/(ref_depth.max() - ref_depth.min())
self.extrapolate_RGBDs = (ref_img.cpu(), ref_depth.cpu())
if self.opt.load_warp_pairs:
self.inpaint_pairs = torch.load(self.save_base_dir + "/" + "inpaint_pairs.pkl")
else:
self.renderer = RGBDRenderer('cuda:0')
self.inpaint_pairs = self.get_pairs()
torch.save(self.inpaint_pairs,self.save_base_dir + "/" + "inpaint_pairs.pkl")
self.perceptual_loss = VGGPerceptualLoss()
self.VitExtractor = VitExtractor(
model_name='dino_vits16', device='cuda:0')
self.renderer_pair_saved = False
def configure_optimizers(self):
from torch.optim import SGD, Adam
parameters = []
for model in self.models:
parameters += list(model.parameters())
self.optimizer = Adam(parameters, lr=5e-4, eps=1e-8, weight_decay=0)
return [self.optimizer], []
def train_dataloader(self):
return DataLoader(self.train_dataset,
shuffle=True,
num_workers=8,
batch_size=self.opt.batch_size,
pin_memory=True)
def get_rand_ext(self, bs=1):
def rand_tensor(r, l):
if r < 0:
return torch.zeros((l, 1, 1))
rand = torch.rand((l, 1, 1))
sign = 2 * (torch.randn_like(rand) > 0).float() - 1
return sign * (r / 2 + r / 2 * rand)
trans_range={"x":0.2, "y":-0.2, "z":-0.2, "a":-0.2, "b":-0.2, "c":-0.2}
x, y, z = trans_range['x'], trans_range['y'], trans_range['z']
a, b, c = trans_range['a'], trans_range['b'], trans_range['c']
cix = rand_tensor(x, bs)
ciy = rand_tensor(y, bs)
ciz = rand_tensor(z, bs)
aix = rand_tensor(math.pi / a, bs)
aiy = rand_tensor(math.pi / b, bs)
aiz = rand_tensor(math.pi / c, bs)
axisangle = torch.cat([aix, aiy, aiz], dim=-1) # [b,1,3]
translation = torch.cat([cix, ciy, ciz], dim=-1)
cam_ext = transformation_from_parameters(axisangle, translation) # [b,4,4]
cam_ext_inv = torch.inverse(cam_ext) # [b,4,4]
return cam_ext, cam_ext_inv
def get_pairs(self):
all_poses = self.train_dataset.all_poses
aug_pose_factor = 0 # set pose augmentation for better results
cnt = len(all_poses)
if aug_pose_factor > 0:
for i in range(cnt):
cur_pose = torch.FloatTensor(all_poses[i])
for _ in range(aug_pose_factor):
cam_ext, cam_ext_inv = self.get_rand_ext() # [b,4,4]
cur_aug_pose = torch.matmul(cam_ext, cur_pose)
all_poses += [cur_aug_pose]
ref_depth = self.extrapolate_RGBDs[1]
ref_img = self.extrapolate_RGBDs[0]
W, H = self.opt.width * self.extrapolate_times, self.opt.height * self.extrapolate_times
inpaint_pairs = [] #(warp_back_image, warp_back_disp, warp_back_mask, ref_img, ref_depth)
val_pairs = [] #(cam_ext, ref_img, warp_image, warp_disp, warp_mask, gt_img)
print("all_poses len:",len(all_poses))
for i, cur_pose in enumerate(all_poses[:]):
cur_pose = all_poses[i]
c2w = cur_pose
c2w = torch.FloatTensor(c2w)
cam_int = self.K.repeat(1, 1, 1) # [b,3,3]
#load cam_ext
cam_ext = c2w
cam_ext_inv = torch.inverse(cam_ext)
cam_ext = cam_ext.repeat(1, 1, 1)[:,:-1,:]
cam_ext_inv = cam_ext_inv.repeat(1, 1, 1)[:,:-1,:]
rgbd = torch.cat([ref_img, ref_depth], dim=1).cuda()
cam_int = cam_int.cuda()
cam_ext = cam_ext.cuda()
cam_ext_inv = cam_ext_inv.cuda()
# warp to a random novel view
mesh = self.renderer.construct_mesh(rgbd, cam_int)
warp_image, warp_disp, warp_mask = self.renderer.render_mesh(mesh, cam_int, cam_ext)
# warp back to the original view
warp_rgbd = torch.cat([warp_image, warp_disp], dim=1) # [b,4,h,w]
warp_mesh = self.renderer.construct_mesh(warp_rgbd, cam_int)
warp_back_image, warp_back_disp, warp_back_mask = self.renderer.render_mesh(warp_mesh, cam_int, cam_ext_inv)
ref_depth_2 = ref_depth
# all depth should be in [0~1]
inpaint_pairs.append((ref_img, ref_depth_2, cur_pose,
warp_image, warp_disp, warp_mask,
warp_back_image, warp_back_disp, warp_back_mask))
print("collecting inpaint_pairs:", len(inpaint_pairs))
return inpaint_pairs
def forward(self, renderer_pair):
(ref_img, ref_depth, cur_pose,
warp_rgb, warp_disp, warp_mask,
warp_back_image, warp_back_disp, warp_back_mask) = renderer_pair
inpainted_warp_image, inpainted_warp_disp = self.inpaint_module(warp_rgb.cuda(), warp_disp.cuda(), warp_mask.cuda())
inpainted_warp_back_image, inpainted_warp_back_disp = self.inpaint_module(warp_back_image.cuda(), warp_back_disp.cuda(), warp_back_mask.cuda())
return {
"ref_img": ref_img,
"ref_depth": ref_depth,
"warp_image": warp_rgb,
"warp_disp": warp_disp,
"inpainted_warp_image":inpainted_warp_image,
"inpainted_warp_disp":inpainted_warp_disp,
"warp_back_image": warp_back_image,
"warp_back_disp": warp_back_disp,
"inpainted_warp_back_image":inpainted_warp_back_image,
"inpainted_warp_back_disp":inpainted_warp_back_disp,
}
def training_step(self, batch, batch_idx, optimizer_idx=0):
renderer_pair = random.choice(self.inpaint_pairs)
batch = self(renderer_pair)
ref_img = batch["ref_img"].cuda()
ref_depth = batch["ref_depth"].cuda()
warp_image = batch["warp_image"]
warp_disp = batch["warp_disp"]
inpainted_warp_image = batch["inpainted_warp_image"]
inpainted_warp_disp = batch["inpainted_warp_disp"]
warp_back_image = batch["warp_back_image"]
warp_back_disp = batch["warp_back_disp"]
inpainted_warp_back_image = batch["inpainted_warp_back_image"]
inpainted_warp_back_disp = batch["inpainted_warp_back_disp"]
# Losses
loss_total = 0
loss_L1 = 0
lambda_loss_L1 = 10
loss_perc = 0
lambda_loss_perc = 5
loss_L1 += F.l1_loss(ref_img, inpainted_warp_back_image)
loss_total += loss_L1 * lambda_loss_L1
loss_perc += self.perceptual_loss(inpainted_warp_image, ref_img) + self.perceptual_loss(inpainted_warp_back_image, ref_img)
loss_total += loss_perc * lambda_loss_perc
loss_inpainted_vit = 1e-1
lambda_loss_vit = 0
ref_vit_feature = self.get_vit_feature(ref_img)
inpainted_vit_feature = self.get_vit_feature(inpainted_warp_image)
inpainted_warp_back_vit_feature = self.get_vit_feature(inpainted_warp_back_image)
loss_inpainted_vit += F.mse_loss(inpainted_vit_feature, ref_vit_feature) + F.mse_loss(inpainted_warp_back_vit_feature, ref_vit_feature)
loss_total += loss_inpainted_vit * lambda_loss_vit
loss_depth = 0
lambda_loss_depth = 1
loss_depth += F.l1_loss(ref_depth, inpainted_warp_back_disp)
loss_total += lambda_loss_depth * loss_depth
if self.opt.debugging:
self.training_epoch_end(None)
assert 0
return {'loss': loss_total}
def training_epoch_end(self, outputs):
with torch.no_grad():
# pred_frames = []
self.renderer_pairs = []
for i, inpaint_pair in enumerate(self.inpaint_pairs):
(ref_img, ref_depth, cur_pose,
warp_image, warp_disp, warp_mask,
warp_back_image, warp_back_disp, warp_back_mask) = inpaint_pair
inpainted_warp_image, inpainted_warp_disp = self.inpaint_module(warp_image.cuda(), warp_disp.cuda(), warp_mask.cuda())
self.renderer_pairs += [(cur_pose,
ref_img,
inpainted_warp_image)]
torch.save(self.inpaint_module.state_dict(), self.save_base_dir + "/" +"inpaint_latest.pt")
if not self.renderer_pair_saved:
torch.save(self.renderer_pairs, self.save_base_dir + "/" + "renderer_pairs.pkl")
if self.opt.debugging:
assert 0, "no bug"
return
def get_vit_feature(self, x):
mean = torch.tensor([0.485, 0.456, 0.406],
device=x.device).reshape(1, 3, 1, 1)
std = torch.tensor([0.229, 0.224, 0.225],
device=x.device).reshape(1, 3, 1, 1)
x = F.interpolate(x, size=(224, 224))
x = (x - mean) / std
return self.VitExtractor.get_feature_from_input(x)[-1][0, 0, :]
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--img_path', type=str, default="test_images/Syndney.jpg")
parser.add_argument('--width', type=int, default=512)
parser.add_argument('--height', type=int, default=512)
parser.add_argument('--ckpt_path', type=str, default="Exp-X")
parser.add_argument('--num_epochs', type=int, default=1)
parser.add_argument('--resume_path', type=str, default=None)
parser.add_argument('--resume', default=False, action="store_true")
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--debugging', default=False, action="store_true")
parser.add_argument('--extrapolate_times', type=int, default=1)
parser.add_argument('--load_warp_pairs', default=False, action="store_true")
opt, _ = parser.parse_known_args()
seed = 50
seed_everything(seed)
system = TrainInpaintingModule(opt)
trainer = Trainer(max_epochs=opt.num_epochs,
progress_bar_refresh_rate=1,
gpus=1,
num_sanity_val_steps=1)
trainer.fit(system)