-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbgan.py
172 lines (133 loc) · 6.38 KB
/
bgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import os
import numpy as np
import math
import PIL
import time
import tensorflow.keras.layers as layers
import tensorflow as tf
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--freq", type=int, default=1, help="number of epochs of saving")
parser.add_argument("--batch_size", type=int, default=256, help="size of the batches")
parser.add_argument("--buffer_size", type=int, default=60000, help="size of the buffers")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=28, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples")
opt = parser.parse_args()
print(opt)
img_shape = (opt.img_size, opt.img_size,opt.channels)
# data load & preprocessing
(train_x, _), (_, _) = tf.keras.datasets.mnist.load_data()
BUFFER_SIZE=train_x.shape[0]
train_x = (train_x - 127.5) / 127.5
train_ds = tf.data.Dataset.from_tensor_slices(train_x).shuffle(BUFFER_SIZE).batch(opt.batch_size, drop_remainder=True)
num_examples_to_generate = 16
# We will reuse this seed overtime (so it's easier)
# to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, opt.latent_dim])
# Loss function
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# define discriminator
def make_discriminaor(input_shape):
return tf.keras.Sequential([
layers.Input(img_shape),
layers.Flatten(),
layers.Dense(256, activation=None, input_shape=input_shape),
layers.LeakyReLU(0.2),
layers.Dense(256, activation=None),
layers.LeakyReLU(0.2),
layers.Dense(1, activation='sigmoid')
])
# define generator
def make_generator(input_shape):
return tf.keras.Sequential([
layers.Dense(256, activation='relu', input_shape=input_shape),
layers.Dense(256, activation='relu'),
layers.Dense(784, activation='tanh'),
layers.Reshape(img_shape)
])
def get_random_z(z_dim, batch_size):
return tf.random.uniform([batch_size, z_dim], minval=-1, maxval=1)
# Initialize generator and discriminator
generator = make_generator((opt.latent_dim,))
discriminator = make_discriminaor((28*28,))
def boundary_seeking_loss(y_pred):
"""
Boundary seeking loss.
Reference: https://wiseodd.github.io/techblog/2017/03/07/boundary-seeking-gan/
"""
return 0.5 * tf.reduce_mean((tf.math.log(y_pred) - tf.math.log(1 - y_pred)) ** 2)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
generator_optimizer = tf.keras.optimizers.Adam(opt.lr)
discriminator_optimizer = tf.keras.optimizers.Adam(opt.lr)
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
@tf.function
def train_step(images):
noise = get_random_z(opt.latent_dim, images.shape[0])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = boundary_seeking_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
return gen_loss, disc_loss
# ----------
# Training
# ----------
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
for batch_idx, image_batch in enumerate(dataset):
g_loss, d_loss = train_step(image_batch)
g_loss_metrics(g_loss)
d_loss_metrics(d_loss)
total_loss_metrics(g_loss + d_loss)
template = '[Epoch{}/{}], Batch[{}/{}] D_loss={:.5f} G_loss={:.5f} Total_loss={:.5f}'
print(template.format(epoch, epochs, batch_idx, len(dataset), d_loss_metrics.result(),
g_loss_metrics.result(), total_loss_metrics.result()))
g_loss_metrics.reset_states()
d_loss_metrics.reset_states()
total_loss_metrics.reset_states()
# Produce images for the GIF as we go
generate_and_save_images(generator,epoch + 1, seed)
# Save the model every 15 epochs
if (epoch + 1) % opt.freq == 0:
checkpoint.save(file_prefix=checkpoint_prefix)
print('Time for epoch {} is {} sec'.format(epoch + 1, time.time() - start))
# # Generate after the final epoch
generate_and_save_images(generator,epochs,seed)
# metrics setting
g_loss_metrics = tf.metrics.Mean(name='g_loss')
d_loss_metrics = tf.metrics.Mean(name='d_loss')
total_loss_metrics = tf.metrics.Mean(name='total_loss')
def generate_and_save_images(model, epoch, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i + 1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
# plt.show()
if __name__ == "__main__":
train(train_ds,opt.n_epochs)