-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_vqgan_transformer_videos.py
297 lines (267 loc) · 13.9 KB
/
sample_vqgan_transformer_videos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Copyright (c) Meta Platforms, Inc. All Rights Reserved
import os
import tqdm
import time
import argparse
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from mebt import VideoData, Net2NetTransformer, load_vqgan, load_transformer
from mebt.utils import save_video_grid
from mebt.data import preprocess
from mebt.utils import shift_dim
from omegaconf import OmegaConf
import math
import torch
import matplotlib.pyplot as plt
import imageio
import numpy as np
from glob import glob
import random
from einops import repeat, rearrange
@torch.no_grad()
def bidirect_sample(model, batch_size, total_length, step_size, context_size,
temperature=1.0, top_k=None, top_p=None,
frame_n_steps=8, vid_n_steps=8, frame_c_temp=4.5, vid_c_temp=4.5,
no_phase=False, ctemp_schedule='linear', strategy='maskgit',
bootstrap=0):
# TODO: first frame decoding -> 16frame decoding -> shift decoding
T, H, W = model.mask_sampler.shape[-3:]
ratio = 0.25
step_size = int(step_size * ratio)
context_size = int(context_size * ratio)
shape = (batch_size, step_size, H, W)
c_indices = repeat(torch.tensor([0]), '1 -> b 1', b=batch_size).to(model.device)
log = dict()
log['samples'] = []
code_map = []
x = torch.zeros(shape, dtype=torch.long, device=model.device)
context_indices = None
target_indices = None
if bootstrap > 0:
x, context_indices, target_indices, _, _, bs_partial_probs = model.sample(x, None, 1., None, None, bootstrap, context_indices, target_indices, context_temperature=vid_c_temp, skips=False, ctemp_schedule=ctemp_schedule, strategy='bootstrap', debug=True)
else:
bs_partial_probs=None
x, context_indices, _, _, _, final_partial_probs = model.sample(x, None, temperature, top_k, top_p, vid_n_steps, context_indices, target_indices, context_temperature=vid_c_temp, skips=False, ctemp_schedule=ctemp_schedule, strategy=strategy, debug=True)
curr_t = step_size
# decode to images and stack.
vq_x = x.reshape(shape)
code_map.append(vq_x)
log["class_label"] = c_indices
# Remaining decoding
while True:
if curr_t >= (total_length * ratio):
break
# save_memory by forgetting the past
new_x = torch.zeros(shape, dtype=torch.long, device=model.device)
new_x[:, :context_size, :, :] = vq_x[:, -context_size:, :, :]
x = new_x
context_indices = torch.stack([torch.arange(H*W*context_size) for _ in range(batch_size)]).to(model.device)
target_indices = torch.stack([torch.arange((step_size-context_size) * H*W) for _ in range(batch_size)]).to(model.device)
target_indices = target_indices + H*W * context_size
x = model.sample(x, None, temperature, top_k, top_p, vid_n_steps, context_indices, target_indices, context_temperature=vid_c_temp, skips=False, ctemp_schedule=ctemp_schedule, strategy=strategy)[0]
# decode to images and stack.
vq_x = x.reshape(shape)
vq_new = vq_x[:, context_size:, :, :]
code_map.append(vq_new)
curr_t += step_size - context_size
code_map = torch.cat(code_map, 1)
if code_map.shape[1] == 1:
code_map = code_map.expand(-1, 4, H, W)
try:
img_x = model.first_stage_model.decode(code_map)
except RuntimeError:
img_x = []
for i in range(code_map.shape[0]):
img_x.append(model.first_stage_model.decode(code_map[i:i+1]))
img_x = torch.cat(img_x, 0)
log['code_maps'] = code_map
log["samples"] = torch.clamp(img_x, -0.5, 0.5) + 0.5
log['samples'] = log['samples'][:, :, :total_length, :, :]
if bs_partial_probs is not None:
final_prob_map = torch.where(final_partial_probs < 0., bs_partial_probs, final_partial_probs)
else:
final_prob_map = final_partial_probs
selected_prob_map = torch.gather(final_prob_map, -1, code_map.view(batch_size, -1, 1)).squeeze(-1)
score = selected_prob_map.log().sum(-1)
log['score'] = score
return log
@torch.no_grad()
def extrapolate(model, vq_input, total_length, step_size, context_size,
temperature=1.0, top_k=None, top_p=None,
frame_n_steps=8, vid_n_steps=8, frame_c_temp=4.5, vid_c_temp=4.5,
no_phase=False, ctemp_schedule='linear', strategy='maskgit',
bootstrap=0):
B, T, H, W = vq_input.shape
batch_size = B
ratio = 0.25
step_size = int(step_size * ratio)
context_size = int(context_size * ratio)
assert T == step_size
total_size = int(total_length * ratio)
jump_size = step_size - context_size
n_jumps = int(np.ceil((total_size - step_size) / jump_size))
shape = (B, step_size, H, W)
c_indices = repeat(torch.tensor([0]), '1 -> b 1', b=batch_size).to(model.device)
log = dict()
log['samples'] = []
curr_t = step_size
# decode to images and stack.
'''
code_length = step_size + jump_size * n_jumps
code_map = torch.zeros(B, code_length, H, W).long().to(model.device)
code_map[:, :step_size, :, :] = vq_input.clone()
'''
code_map = [vq_input.clone()]
log["class_label"] = c_indices
# Remaining decoding
indices = torch.stack([torch.arange(H*W*step_size) for _ in range(batch_size)]).to(model.device)
indices = rearrange(indices, 'b (t h w) -> b t h w', h=H, w=W)
context_indices = indices[:, :context_size].view(B, -1)
target_indices = indices[:, context_size:].view(B, -1)
x = vq_input
for j in range(n_jumps):
# save_memory by forgetting the past
vq_input = torch.zeros_like(x)
vq_input[:, :context_size] = code_map[-1][:, -context_size:]
x = model.sample(vq_input.view(B, -1), None, temperature, top_k, top_p, vid_n_steps, context_indices, target_indices, context_temperature=vid_c_temp, skips=False, edit=True)[0]
# decode to images and stack.
x = rearrange(x, 'b (t h w) -> b t h w', h=H, w=W)
code_map.append(x.clone()[:, context_size:])
code_map = torch.cat(code_map, 1)
try:
img_x = model.first_stage_model.decode(code_map)
except RuntimeError:
img_x = []
for i in range(code_map.shape[0]):
img_x.append(model.first_stage_model.decode(code_map[i:i+1]))
img_x = torch.cat(img_x, 0)
log['code_maps'] = code_map
log["samples"] = torch.clamp(img_x, -0.5, 0.5) + 0.5
log['samples'] = log['samples'][:, :, :total_length, :, :]
return log
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument('--base', nargs='*', metavar="base_config.yaml")
parser = VideoData.add_data_specific_args(parser)
parser.add_argument('--gpt_ckpt', type=str, default='')
parser.add_argument('--base_np', type=str, default='')
parser.add_argument('--exp_name', type=str, default='')
parser.add_argument('--save', type=str, default='./results/mebt')
parser.add_argument('--top_k', type=int, default=None)
parser.add_argument('--temp', type=float, default=1.0)
parser.add_argument('--frame_c_temp', type=float, default=4.5)
parser.add_argument('--vid_c_temp', type=float, default=1.0)
parser.add_argument('--frame_n_steps', type=int, default=16)
parser.add_argument('--vid_n_steps', type=int, default=128)
parser.add_argument('--total_length', type=int, default=32)
parser.add_argument('--context_size', type=int, default=12)
parser.add_argument('--step_size', type=int, default=16)
parser.add_argument('--bootstrap', type=int, default=0)
parser.add_argument('--run', type=int, default=0)
parser.add_argument('--top_p', type=float, default=None)
parser.add_argument('--n_sample', type=int, default=2048)
parser.add_argument('--dataset', type=str, default='mshapes', choices=['ucf101', 'stl', 'taichi', 'mshapes'])
parser.add_argument('--format', type=str, default='gif', choices=['webp', 'mp4', 'gif', 'avi'])
parser.add_argument('--save_videos', action='store_true')
parser.add_argument('--save_n', type=int, default=5)
parser.add_argument('--save_codemap', action='store_true')
parser.add_argument('--no_np', action='store_true')
parser.add_argument('--no_phase', action='store_true')
parser.add_argument('--latest', action='store_true')
parser.add_argument('--schedule', type=str, default='cosine')
parser.add_argument('--decoding_strategy', type=str, default='maskgit', choices=['maskgit', 'random', 'ar'])
parser.add_argument('--ctemp_schedule', type=str, default='linear', choices=['linear', 'constant', 'cosine'])
parser.add_argument('-v', '--verbose', action='store_true')
args, unknown = parser.parse_known_args()
if args.default_root_dir is None:
args.default_root_dir = ''
configs = [OmegaConf.load(cfg) for cfg in args.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
resolution = config.data.resolution if config.data.image_folder else args.resolution
ver = args.exp_name
args.save = f'results/{ver}'
if args.gpt_ckpt=='':
if not args.latest:
args.gpt_ckpt = glob(f'logs/{ver}/lightning_logs/version_0/checkpoints/best_checkpoint.ckpt')[0]
else:
ckpts = glob(f'logs/{ver}/lightning_logs/version_0/checkpoints/*/loss=*.ckpt')
iters = [int(ckpt.split('step=')[-1].split('-train')[0]) for ckpt in ckpts]
max_iter = max(iters)
args.gpt_ckpt = glob(f'logs/{ver}/lightning_logs/version_0/checkpoints/*step={max_iter}-train/loss=*.ckpt')[0]
args.save += '_latest'
print(args.gpt_ckpt)
os.makedirs(args.save, exist_ok=True)
config.model.params.class_cond_dim = None
gpt = load_transformer(args.gpt_ckpt, vqgan_ckpt=None).cuda().eval()
gpt.mask_sampler.schedule = args.schedule
save_dir = f'{args.save}/videos_{args.total_length}/{args.dataset}/VID_n_steps{args.vid_n_steps}'
save_np = f'{args.save}/numpy_files_{args.total_length}/{args.dataset}/VID_n_steps{args.vid_n_steps}'
if args.top_k is not None:
save_dir += f'_k{args.top_k}'
save_np += f'_k{args.top_k}'
if args.top_p is not None:
save_dir += f'_p{args.top_p}'
save_np += f'_p{args.top_p}'
save_dir += f'_temp{args.temp}_ctemp{args.vid_c_temp}{args.ctemp_schedule}_{args.decoding_strategy}_{args.schedule}'
save_np += f'_temp{args.temp}_ctemp{args.vid_c_temp}{args.ctemp_schedule}_{args.decoding_strategy}_{args.schedule}'
if not args.no_phase:
assert 0
print("Warning: generation the first frame first.")
if args.no_phase:
save_dir += f'_no_phase'
save_np += f'_no_phase'
save_dir += f'_run{args.run}'
save_np += f'_run{args.run}'
print('generating and saving video to %s...'%save_dir)
os.makedirs(save_dir, exist_ok=True)
all_data = []
all_code = []
all_scores = []
n_row = min(int(np.sqrt(args.batch_size)), 4)
n_batch = args.n_sample//args.batch_size+1
with torch.no_grad():
if args.base_np == '':
for sample_id in tqdm.tqdm(range(n_batch)):
logs = bidirect_sample(gpt, args.batch_size, total_length=args.total_length,
step_size=args.step_size, context_size=args.context_size, temperature=args.temp,
top_k=args.top_k, top_p=args.top_p,
frame_n_steps=args.frame_n_steps, vid_n_steps=args.vid_n_steps, frame_c_temp=args.frame_c_temp, vid_c_temp=args.vid_c_temp,
no_phase=args.no_phase, ctemp_schedule=args.ctemp_schedule, strategy=args.decoding_strategy, bootstrap=args.bootstrap)
if args.save_videos:
if sample_id < args.save_n:
save_video_grid(logs['samples'], os.path.join(save_dir, 'generation_%d.%s'%(sample_id, args.format)), n_row)
all_data.append(logs['samples'].cpu().data.numpy()) # 256*4 x 8 x 3 x 16 x 128 x 128
all_code.append(logs['code_maps'].cpu().data.numpy())
else:
vq_np = np.load(args.base_np)
for sample_id in tqdm.tqdm(range(n_batch)):
vq_x = torch.tensor(vq_np[sample_id*args.batch_size:(sample_id+1)*args.batch_size]).long().cuda()
logs = extrapolate(gpt, vq_x, total_length=args.total_length,
step_size=args.step_size, context_size=args.context_size, temperature=args.temp,
top_k=args.top_k, top_p=args.top_p,
frame_n_steps=args.frame_n_steps, vid_n_steps=args.vid_n_steps, frame_c_temp=args.frame_c_temp, vid_c_temp=args.vid_c_temp,
no_phase=args.no_phase, ctemp_schedule=args.ctemp_schedule, strategy=args.decoding_strategy, bootstrap=args.bootstrap)
if args.save_videos:
if sample_id < args.save_n:
save_video_grid(logs['samples'], os.path.join(save_dir, 'generation_%d.%s'%(sample_id, args.format)), n_row, fps=30)
all_data.append(logs['samples'].cpu().data.numpy()) # 256*4 x 8 x 3 x 16 x 128 x 128
all_code.append(logs['code_maps'].cpu().data.numpy())
if args.save_codemap:
print('saving code_map numpy file to %s...'%save_np+'_codemap')
os.makedirs(os.path.dirname(save_np), exist_ok=True)
all_code_np = np.concatenate(all_code, 0)
np.save(save_np+'_codemap', all_code_np[:args.n_sample])
if not args.no_np:
print('saving numpy file to %s...'%save_np)
os.makedirs(os.path.dirname(save_np), exist_ok=True)
all_data_np = np.array(all_data)
all_data_np = np.transpose(all_data_np.reshape(-1, 3, args.total_length, resolution, resolution), (0, 2, 3, 4, 1)) # B T H W C
n_total = all_data_np.shape[0]
all_data_np = (all_data_np*255).astype(np.uint8)[np.random.permutation(n_total)[:args.n_sample]]
np.save(save_np, all_data_np)
'''
all_score_np = np.concatenate(all_scores, 0)
np.save(save_np+'score', all_score_np[:args.n_sample])
'''