forked from kmhatre14/brain-segmentation-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.py
56 lines (44 loc) · 1.65 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from io import BytesIO
import scipy.misc
import tensorflow as tf
class Logger(object):
def __init__(self, log_dir):
self.writer = tf.summary.FileWriter(log_dir)
def scalar_summary(self, tag, value, step):
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
self.writer.flush()
def image_summary(self, tag, image, step):
s = BytesIO()
scipy.misc.toimage(image).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(
encoded_image_string=s.getvalue(),
height=image.shape[0],
width=image.shape[1],
)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, image=img_sum)])
self.writer.add_summary(summary, step)
self.writer.flush()
def image_list_summary(self, tag, images, step):
if len(images) == 0:
return
img_summaries = []
for i, img in enumerate(images):
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(
encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1],
)
# Create a Summary value
img_summaries.append(
tf.Summary.Value(tag="{}/{}".format(tag, i), image=img_sum)
)
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
self.writer.flush()