-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_attention_model.py
253 lines (201 loc) · 9.38 KB
/
custom_attention_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from __future__ import print_function
import argparse
import torch
import sys
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from dataloaders.VQADataset import VQADataset
import time
from models.stacked_attention_model import returnmodel
from tensorboardX import SummaryWriter
import numpy as np
import os
from utils import utils, logger
model_details = "stacked_attention_concat_model"
tensorboard_writer = SummaryWriter('logs/custom_attention_concat_model_2'.format(model_details),comment="Stacked Attention Model")
# Training settings
parser = argparse.ArgumentParser(description='Visual Question Answering')
parser.add_argument('--logdir', default="logs", type=str, help='log directory')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 256)')
parser.add_argument('--epochs', type=int, default=30, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=3e-4, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--parallel', action='store_true', default=True,
help='enables CUDA training')
parser.add_argument('--num-workers', default=8,
help='enables CUDA training')
parser.add_argument('--cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = args.cuda and torch.cuda.is_available()
args.parallel = args.parallel and args.cuda
torch.manual_seed(args.seed)
if args.cuda:
print("Cuda is available")
torch.cuda.manual_seed(args.seed)
if args.cuda:
kwargs = {'num_workers': int(args.num_workers), 'pin_memory': False}
else:
kwargs = {'num_workers': int(args.num_workers), 'pin_memory': True}
opt = {'dir': 'data/', 'images': 'Images', 'nans': 2000, 'sampleans': True,
'maxlength': 26, 'minwcount': 0, 'nlp': 'mcb', 'pad': 'left'}
################################################
# Create Dataset
################################################
#TODO change back to train
train_dataset = VQADataset("dummydata_", opt)
train_loader = train_dataset.data_loader(shuffle=True, batch_size=args.batch_size, **kwargs)
#TODO change back to val
test_dataset = VQADataset("dummydata_", opt)
test_loader = test_dataset.data_loader(shuffle=False, batch_size=args.test_batch_size, **kwargs)
################################################
# Create Model and Optimizer
################################################
model = returnmodel(args.cuda, args.parallel)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
################################################
# Count model parameters
################################################
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
################################################
# Create log directory
################################################
exp_logger = None
logdir = os.path.join(opt['dir'],args.logdir)
if os.path.isdir(logdir):
pass
else:
os.system('mkdir -p ' + os.path.join(opt['dir'],args.logdir))
if exp_logger is None:
# Set loggers
exp_name = os.path.basename(logdir) # add timestamp
exp_logger = logger.Experiment(exp_name )
exp_logger.add_meters('train', logger.make_meters())
exp_logger.add_meters('test', logger.make_meters())
exp_logger.add_meters('val', logger.make_meters())
exp_logger.info['model_params'] = params
print('Model has {} parameters'.format(exp_logger.info['model_params']))
def train(epoch, logger,tensorboard_writer):
begin = time.time()
model.train()
meters = logger.reset_meters('train')
start = time.time()
for batch_idx, data in enumerate(train_loader):
batch_size = data['question'].size(0)
# Measures the data loading time
meters['data_time'].update(time.time() - begin, n=batch_size)
if args.cuda:
question, image, target = data['question'].cuda(), data['image'].float().cuda(), data['answer'].cuda()
else:
question, image, target = data['question'], data['image'].float(), data['answer']
question, image, target = Variable(question), Variable(image), Variable(target)
# Compute output and loss
output = model(question, image)
if args.cuda:
torch.cuda.synchronize()
loss = F.nll_loss(output, target)
# Log the loss
meters['loss'].update(loss.item(), n=batch_size)
# Measure accuracy
acc1, acc5 = utils.accuracy(output.data, target.data, topk=(1, 5))
meters['acc1'].update(acc1[0], n=batch_size)
meters['acc5'].update(acc5[0], n=batch_size)
tensorboard_writer.add_scalar("train_loss",loss.item(), epoch*len(train_loader)+batch_idx)
tensorboard_writer.add_scalar("train_top1_acc",acc1[0], epoch*len(train_loader)+batch_idx)
tensorboard_writer.add_scalar("train-top_5_acc ",acc5[0], epoch*len(train_loader)+batch_idx)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 5)
if args.cuda:
torch.cuda.synchronize()
optimizer.step()
if args.cuda:
torch.cuda.synchronize()
meters['batch_time'].update(time.time() - begin, n=batch_size)
begin = time.time()
#optimizer.step()
if batch_idx % args.log_interval == 0:
print("Time since last print : {}".format(time.time() - start))
start = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {acc1.val:.3f} ({acc1.avg:.3f})\t'
'Acc@5 {acc5.val:.3f} ({acc5.avg:.3f})'.format(
epoch, batch_idx, len(train_loader),
batch_time=meters['batch_time'], data_time=meters['data_time'],
loss=meters['loss'], acc1=meters['acc1'], acc5=meters['acc5']))
sys.stdout.flush()
logger.log_meters('train', n=epoch)
def test(logger, epoch):
model.eval()
test_loss = 0
meters = logger.reset_meters('val')
begin = time.time()
for batch_idx, data in enumerate(test_loader):
batch_size = data['answer'].size(0)
if args.cuda:
question, image, target = data['question'].cuda(), data['image'].float().cuda(), data['answer'].cuda()
else:
question, image, target = data['question'], data['image'].float(), data['answer']
question, image, target = Variable(question, volatile=True), Variable(image, volatile=True), Variable(target, volatile=True)
# Compute output and loss
output = model(question, image)
loss = F.nll_loss(output, target).data[0]
test_loss += loss # sum up batch loss
meters['loss'].update(loss, n=batch_size)
acc1, acc5 = utils.accuracy(output.data, target.data, topk=(1, 5))
meters['acc1'].update(acc1[0], n=batch_size)
meters['acc5'].update(acc5[0], n=batch_size)
tensorboard_writer.add_scalar("Test_loss",loss.item(), epoch*len(test_loader)+batch_idx)
tensorboard_writer.add_scalar("Test_top1_acc",acc1[0], epoch*len(test_loader)+batch_idx)
tensorboard_writer.add_scalar("Test_top5_acc ",acc5[0], epoch*len(test_loader)+batch_idx)
meters['batch_time'].update(time.time() - begin, n=batch_size)
test_loss /= len(test_loader.dataset)
print('\n Test set: Average loss: {:.4f}, Acc@1 {acc1.avg:.3f} Acc@5 {acc5.avg:.3f}'
.format(test_loss, acc1=meters['acc1'], acc5=meters['acc5']))
logger.log_meters('val', n=epoch)
return meters['acc1'].avg
best_acc = 0
for epoch in range(1, args.epochs + 1):
print(epoch)
train(epoch, exp_logger,tensorboard_writer)
test_acc = test(exp_logger, epoch)
is_best = test_acc > best_acc
if is_best:
print("Saving model with {} accuracy".format(test_acc))
if is_best:
torch.save(model.state_dict(), os.path.join(opt['dir'], 'custom_attaention_best_model_' + str(best_acc) + '.pt'))
if args.cuda:
torch.cuda.synchronize()
#
# best_acc = max(test_acc, best_acc)
# print("Best accuracy so far :", best_acc)
# if is_best:
# torch.save(model.state_dict(), os.path.join(opt['dir'], 'best_model_'+str(best_acc) +'.pt'))
# #utils.save_checkpoint({
# # 'epoch': epoch,
# # 'best_acc1': best_acc,
# # 'exp_logger': exp_logger
# #},
# # model.state_dict(),
# # optimizer.state_dict(),
# # logdir,
# # True,
# # True,
# #iTrue)
# # is_best)
tensorboard_writer.close()