-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
187 lines (147 loc) · 7.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
from transformers import pipeline, set_seed
import matplotlib.pyplot as plt
import pandas as pd
from datasets import load_dataset, load_metric
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import nltk
from nltk.tokenize import sent_tokenize
from tqdm import tqdm
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
nltk.download("punkt")
from calculate_metric import calculate_metric_on_test_ds
from datasets import load_dataset
from transformers import TrainingArguments, Trainer
import mlflow
import mlflow.pytorch
import pandas as pd
from huggingface_hub import notebook_login
from transformers import DataCollatorForSeq2Seq
import mlflow
import os
from dotenv import load_dotenv
load_dotenv()
# Acesse as variáveis de ambiente
NGROK_AUTH_TOKEN = os.getenv("NGROK_AUTH_TOKEN")
HUB_MODEL_TOKEN_READ = os.getenv("HUB_MODEL_TOKEN_READ")
HUB_MODEL_TOKEN_WRITE = os.getenv("HUB_MODEL_TOKEN_WRITE")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set model e tokenzizer
class Model():
def __init__(self, model_checkpoint="unicamp-dl/ptt5-base-portuguese-vocab",t5_tokenizer="unicamp-dl/ptt5-base-portuguese-vocab"):
self.t5_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5_tokenizer)
# load dataset,
def load_dataset_hugging_face(self, dataset="VictorNGomes/CorpusTeMario", token=None, text_column='texto', summary_column='sumario'):
self.text = text_column
self.summary = summary_column
print("Loading model from huggingface")
dataset_samsum = load_dataset(dataset, token)
print("Dataset loaded")
split_lengths = [len(dataset_samsum[split]) for split in dataset_samsum]
print("dataset loaded")
print(f"Split lengths: {split_lengths}")
print(f"Features: {dataset_samsum['train'].column_names}")
print("\nText:")
print(dataset_samsum["test"][0][self.text])
print("\nSummary:")
print(dataset_samsum["test"][0][self.summary])
return dataset_samsum
def histogram_tokens(self, dataset_samsum, t5_tokenizer):
dialogue_token_len = []
summary_token_len = []
for i in dataset_samsum['train'][self.text]:
dialogue_token_len.append(len(self.t5_tokenizer.encode(i)))
for i in dataset_samsum['train'][self.text]:
summary_token_len.append(len(self.t5_tokenizer.encode(i)))
fig, axes = plt.subplots(1, 2, figsize=(10, 4))
axes[0].hist(dialogue_token_len, bins=20)
axes[0].set_title("Text Token Length")
axes[0].set_xlabel("Length")
axes[0].set_ylabel("Count")
axes[1].hist(summary_token_len, bins=20)
axes[1].set_title("Summary Token Length")
axes[1].set_xlabel("Length")
plt.tight_layout()
plt.show()
def convert_examples_to_features(self, example_batch):
prefix = "summarize: "
inputs = [prefix + doc for doc in example_batch[self.text]]
input_encodings = self.t5_tokenizer(inputs, max_length=1024, truncation=True)
with self.t5_tokenizer.as_target_tokenizer():
target_encodings = self.t5_tokenizer(example_batch['sumario'], max_length=128, truncation=True)
return {
'input_ids': input_encodings['input_ids'],
'attention_mask': input_encodings['attention_mask'],
'labels': target_encodings['input_ids']
}
def parse_args():
parser = argparse.ArgumentParser(description="Script para treinar um modelo e realizar experimento com MLflow.")
parser.add_argument("--model_checkpoint", required=True, help="Caminho ou nome do modelo checkpoint.")
parser.add_argument("--tokenizer", required=True, help="Caminho ou nome do tokenizer.")
parser.add_argument("--dataset", required=True, help="Caminho do conjunto de dados.")
parser.add_argument("--text_column", required=False, help="Nome da coluna de texto no conjunto de dados.")
parser.add_argument("--summary_column", required=False, help="Nome da coluna de sumário no conjunto de dados.")
parser.add_argument("--experiment_name", required=True, help="Nome do experimento no MLflow.")
parser.add_argument("--push_to_huggingface", action="store_true", help="Flag para decidir se faz push para Hugging Face.")
return parser.parse_args()
def main():
args = parse_args()
model = Model(model_checkpoint=args.model_checkpoint, t5_tokenizer=args.tokenizer)
dataset = model.load_dataset_hugging_face(args.dataset,args.text_column,args.summary_column)
dataset_samsum_pt = dataset.map(model.convert_examples_to_features, batched=True)
seq2seq_data_collator = DataCollatorForSeq2Seq(model.t5_tokenizer, model=model.t5_model)
rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
rouge_metric = load_metric('rouge')
# Define your MLflow experiment
mlflow.set_experiment(args.experiment_name)
# Start an MLflow run
with mlflow.start_run():
# Your machine learning code here
trainer_args = TrainingArguments(
output_dir='ptt_temario',
num_train_epochs=50,
warmup_steps=500,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
weight_decay=0.01,
logging_steps=10,
evaluation_strategy='steps',
eval_steps=500,
save_steps=1e6,
gradient_accumulation_steps=16,
push_to_hub=args.push_to_huggingface,
fp16=True,
hub_model_id='VictorNGomes/pttmario5',
hub_token=HUB_MODEL_TOKEN_WRITE
)
trainer = Trainer(model=model.t5_model, args=trainer_args,
tokenizer=model.t5_tokenizer, data_collator=seq2seq_data_collator,
train_dataset=dataset_samsum_pt["train"],
eval_dataset=dataset_samsum_pt["validation"])
trainer.train()
# Log parameters and metrics to MLflow
mlflow.log_params(trainer_args.to_dict())
# Log custom metrics (e.g., Rouge scores)
score = calculate_metric_on_test_ds(
dataset['test'], rouge_metric, trainer.model, model.t5_tokenizer, batch_size=1, column_text=args.text_column,
column_summary=args.summary_column
)
rouge_dict = {rn: score[rn].mid.fmeasure for rn in rouge_names}
df_rouge = pd.DataFrame(rouge_dict, index=['ptt5-temario'])
print(df_rouge)
# Log specific ROUGE scores using MLflow
for rouge_type in ["rouge1", "rouge2", "rougeL", "rougeLsum"]:
rouge_score = rouge_dict.get(rouge_type, 0.0) # Default to 0.0 if the metric is not present
mlflow.log_metric(f'{rouge_type}_fmeasure', rouge_score)
if args.push_to_huggingface:
trainer.push_to_hub()
pipe = pipeline("summarization", model=model.model_checkpoint)
with mlflow.start_run():
mlflow.transformers.log_model(
transformers_model=pipe,
artifact_path="my_pipeline",
)
if __name__ == '__main__':
main()