-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
33 lines (26 loc) · 1.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import pickle
# Load dataset
file_path = 'data/Housing.csv'
housing_data = pd.read_csv(file_path)
# Preprocess dataset
categorical_columns = ['mainroad', 'guestroom', 'basement', 'hotwaterheating',
'airconditioning', 'prefarea', 'furnishingstatus']
housing_data_encoded = pd.get_dummies(housing_data, columns=categorical_columns, drop_first=True)
scaler = MinMaxScaler()
numerical_columns = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking'] # Exclude 'price' from scaling
housing_data_encoded[numerical_columns] = scaler.fit_transform(housing_data_encoded[numerical_columns])
# Split data
X = housing_data_encoded.drop('price', axis=1)
y = housing_data_encoded['price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train model
model = RandomForestRegressor(random_state=42, n_estimators=100)
model.fit(X_train, y_train)
# Save model and scaler
with open('model/model.pkl', 'wb') as file:
pickle.dump((model, scaler), file)
print("Model training and saving completed.")