forked from lrlab/CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sc-cnn.py
215 lines (173 loc) · 7.23 KB
/
train_sc-cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# -*- coding: utf-8 -*-
import sys, os
import six
import argparse
import numpy as np
from sklearn.cross_validation import train_test_split
import chainer
import chainer.links as L
from chainer import optimizers, cuda, serializers
import chainer.functions as F
from CNNSC import CNNSC
import util
"""
Code for the paper, Convolutional Neural Networks for Sentence Classification (EMNLP2014)
CNNによるテキスト分類 (posi-nega)
"""
def get_parser():
DEF_GPU = -1
DEF_DATA = "..{sep}Data{sep}input.dat".format(sep=os.sep)
DEF_EPOCH = 100
DEF_BATCHSIZE = 50
#引数の設定
parser = argparse.ArgumentParser()
parser.add_argument('--gpu',
dest='gpu',
type=int,
default=DEF_GPU,
metavar='CORE_NUMBER',
help='use CORE_NUMBER gpu (default: use cpu)')
parser.add_argument('--data',
dest='data',
type=str,
default=DEF_DATA,
metavar='PATH',
help='an input data file')
parser.add_argument('--epoch',
dest='epoch',
type=int,
default=DEF_EPOCH,
help='number of epochs to learn')
parser.add_argument('--batchsize',
dest='batchsize',
type=int,
default=DEF_BATCHSIZE,
help='learning minibatch size')
parser.add_argument('--save-model',
dest='save_model',
action='store',
type=str,
default=None,
metavar='PATH',
help='save model to PATH')
parser.add_argument('--save-optimizer',
dest='save_optimizer',
action='store',
type=str,
default=None,
metavar='PATH',
help='save optimizer to PATH')
parser.add_argument('--baseline',
dest='baseline',
action='store_true',
help='if true, run baseline model')
return parser
def save_model(model, file_path='sc_cnn.model'):
# modelを保存
print 'save the model'
model.to_cpu()
serializers.save_npz(file_path, model)
def save_optimizer(optimizer, file_path='sc_cnn.state'):
# optimizerを保存
print 'save the optimizer'
serializers.save_npz(file_path, optimizer)
def train(args):
batchsize = args.batchsize # minibatch size
n_epoch = args.epoch # エポック数
# Prepare dataset
dataset, height, width = util.load_data(args.data)
#dataset, height, width = util.load_data_with_rand_vec(args.data)
print 'height (max length of sentences):', height
print 'width (size of wordembedding vecteor ):', width
dataset['source'] = dataset['source'].astype(np.float32) #特徴量
dataset['target'] = dataset['target'].astype(np.int32) #ラベル
x_train, x_test, y_train, y_test = train_test_split(dataset['source'], dataset['target'], test_size=0.10)
N_test = y_test.size # test data size
N = len(x_train) # train data size
in_units = x_train.shape[1] # 入力層のユニット数 (語彙数)
# (nsample, channel, height, width) の4次元テンソルに変換
input_channel = 1
x_train = x_train.reshape(len(x_train), input_channel, height, width)
x_test = x_test.reshape(len(x_test), input_channel, height, width)
n_label = 2 # ラベル数
filter_height = [3,4,5] # フィルタの高さ
baseline_filter_height = [3]
filter_width = width # フィルタの幅 (embeddingの次元数)
output_channel = 100
decay = 0.0001 # 重み減衰
grad_clip = 3 # gradient norm threshold to clip
max_sentence_len = height # max length of sentences
# モデルの定義
if args.baseline == False:
# 提案モデル
model = CNNSC(input_channel,
output_channel,
filter_height,
filter_width,
n_label,
max_sentence_len)
else:
# ベースラインモデル (フィルタの種類が1つ)
model = CNNSC(input_channel,
output_channel,
baseline_filter_height,
filter_width,
n_label,
max_sentence_len)
# Setup optimizer
optimizer = optimizers.AdaDelta()
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer.GradientClipping(grad_clip))
optimizer.add_hook(chainer.optimizer.WeightDecay(decay))
#GPUを使うかどうか
if args.gpu >= 0:
cuda.check_cuda_available()
cuda.get_device(args.gpu).use()
model.to_gpu()
xp = np if args.gpu < 0 else cuda.cupy #args.gpu <= 0: use cpu, otherwise: use gpu
# Learning loop
for epoch in six.moves.range(1, n_epoch + 1):
print 'epoch', epoch, '/', n_epoch
# training
perm = np.random.permutation(N) #ランダムな整数列リストを取得
sum_train_loss = 0.0
sum_train_accuracy = 0.0
for i in six.moves.range(0, N, batchsize):
#perm を使い x_train, y_trainからデータセットを選択 (毎回対象となるデータは異なる)
x = chainer.Variable(xp.asarray(x_train[perm[i:i + batchsize]])) #source
t = chainer.Variable(xp.asarray(y_train[perm[i:i + batchsize]])) #target
model.zerograds()
y = model(x)
loss = F.softmax_cross_entropy(y, t) # 損失の計算
accuracy = F.accuracy(y, t) # 正解率の計算
sum_train_loss += loss.data * len(t)
sum_train_accuracy += accuracy.data * len(t)
# 最適化を実行
loss.backward()
optimizer.update()
print('train mean loss={}, accuracy={}'.format(sum_train_loss / N, sum_train_accuracy / N)) #平均誤差
# evaluation
sum_test_loss = 0.0
sum_test_accuracy = 0.0
for i in six.moves.range(0, N_test, batchsize):
# all test data
x = chainer.Variable(xp.asarray(x_test[i:i + batchsize]))
t = chainer.Variable(xp.asarray(y_test[i:i + batchsize]))
y = model(x, False)
loss = F.softmax_cross_entropy(y, t) # 損失の計算
accuracy = F.accuracy(y, t) # 正解率の計算
sum_test_loss += loss.data * len(t)
sum_test_accuracy += accuracy.data * len(t)
print(' test mean loss={}, accuracy={}'.format(sum_test_loss / N_test, sum_test_accuracy / N_test)) #平均誤差
sys.stdout.flush()
return model, optimizer
def main():
parser = get_parser()
args = parser.parse_args()
model, optimizer = train(args)
if args.save_model != None:
save_model(model)
if args.save_optimizer != None:
save_optimizer(optimizer)
if __name__ == "__main__":
main()