-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWaveGenerator.py
253 lines (218 loc) · 9.44 KB
/
WaveGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Generate waveform based on bits input.
from typing import Literal
import numpy as np
import matplotlib.pyplot as plt
from Demodulator import Demodulator, symbolMapping, WDMDemodulator
# Basic waveform generator
class BasicWaveGenerator:
# Constructor
def __init__(self, bps=1e6, fs=1e8,
basicWave:Literal['Square', 'Gaussian', 'RaisedCosine', 'RC']='Gaussian',
alpha:float|Literal['auto']='auto'):
self.setBps(bps).setFs(fs).setBasicWave(basicWave, alpha).addZero(0)
self.generated = False
# Set bps
def setBps(self, bps):
self.bps = bps
self.fs = 20 * bps
self.generated = False
return self
# Set fs
def setFs(self, fs):
self.fs = fs
self.generated = False
return self
# set bits
def setBits(self, bits):
if isinstance(bits, (int, float, np.number)):
bits = [bits]
self.raw = np.array(bits)
self.generated = False
return self
# set modulation method
def modulation(self,
method: Literal['OOK', 'QPSK', '16QAM', '32QAM', '64QAM', 'PAM']='OOK',
maxEnergy: float | np.number=None,
minEnergy: float | np.number=None,
averageEnergy: float | np.number=None,
symbolCount: int | np.number=None):
self.method = (method, maxEnergy, minEnergy, averageEnergy, symbolCount)
self.generated = False
return self
# pad the signal with zeros. Usually 1~4 bits is enough
def addZero(self, n:int):
self.padding = n
self.generated = False
return self
def zeroAdder(self, bits, n):
return np.pad(np.array(bits), (n, n), 'constant', constant_values=0)
# set waveform type
def setBasicWave(self,
basicWave:Literal['Square', 'Gaussian', 'RaisedCosine', 'RC']='Gaussian',
alpha:float|Literal['auto']='auto'):
self.basicWave = basicWave
if alpha == 'auto':
if basicWave == 'Gaussian':
# For Gaussian pulse, alpha = pi * T0, 3dB bandwidth = 0.5887 / alpha
self.alpha = 0.5887 / self.bps / 2
elif basicWave == 'RaisedCosine' or basicWave == 'RC':
self.alpha = 0.5
else:
if alpha == 0:
alpha = 1e-20
self.alpha = alpha
return self
# Generate waveform
def generate(self, freqType:Literal['all', 'freq', 'omega']='all'):
self.calcBasicInfo()
self.bits = symbolMapping(self.raw, *self.method)
self.bits = self.zeroAdder(self.bits, self.padding)
self.waveform = self.generator(self.bits)
self.generated = True
return self.getWave(freqType)
# Calc basic information
def calcBasicInfo(self):
try:
self.n = self.raw.shape[-1] + 2*self.padding
self.Ns = int(self.fs / self.bps)
self.N = self.Ns * self.n
self.t = np.arange(0, self.N/self.fs, 1/self.fs)[:self.N]
self.f = np.arange(-self.fs/2, self.fs/2, self.bps/self.n)[:self.N]
self.w = 2*np.pi*self.f
except AttributeError:
print('Some attributes are missing. Please set bps, fs, and basicWave first.')
# Basic generator
def generator(self, bits):
# Calculate basic impulse
base = np.zeros(self.Ns)
base[base.size//2] = 1
waveform = np.kron(bits, base)
self.filter = np.ones(self.N)
# Generate waveform based on basic waveform type
match self.basicWave:
case 'Square':
# Pass the Square filter
base = np.ones(self.Ns)
waveform = np.kron(bits, base)
self.filter = np.fft.fftshift(np.fft.fft(base))
case 'Gaussian':
# Pass the Gaussian filter
self.filter = np.exp(-self.alpha**2 * self.f**2) * np.sqrt(self.Ns * self.alpha * self.bps * np.sqrt(2 / np.pi))
waveform = np.fft.ifft(np.fft.fft(waveform) * np.fft.fftshift(self.filter))
case 'RaisedCosine' | 'RC':
# Pass the raised cosine filter
self.filter = np.zeros(self.N)
upper = np.abs(self.f) <= (1+self.alpha)*self.bps/2
self.filter[upper] = 0.5*(1 + np.cos(np.pi/self.alpha/self.bps * (np.abs(self.f[upper])-(1-self.alpha)*self.bps/2)))
self.filter[np.abs(self.f) <= (1-self.alpha)*self.bps] = 1
waveform = np.fft.ifft(np.fft.fft(waveform) * np.fft.fftshift(self.filter))
case _:
print('Unknown basic waveform type')
return waveform
# Get waveform
def getWave(self, freqType:Literal['all', 'freq', 'omega']='all'):
if not self.generated:
self.generate()
if freqType == 'all':
return self.waveform, self.t, self.f, self.w
elif freqType == 'freq':
return self.waveform, self.t, self.f
elif freqType == 'omega':
return self.waveform, self.t, self.w
else:
print('Unknown frequency type')
# Plot waveform
def plot(self):
if not self.generated:
self.generate()
plt.figure(num='Waveform')
plt.subplot(2, 1, 1)
plt.plot(self.t, np.abs(self.waveform))
plt.title('Waveform')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
plt.grid(True, 'major')
plt.subplot(2, 1, 2)
plt.plot(self.f, np.abs(np.fft.fftshift(np.fft.fft(self.waveform))))
plt.title('Frequency Spectrum')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Magnitude')
plt.grid(True, 'major')
plt.subplots_adjust(hspace=0.5)
plt.show()
def info(self):
print(f'bps: {self.bps:.2e}')
print(f'fs: {self.fs:.2e}Hz')
print(f'Symbol Period: {1/self.bps*1e12:.2f}ps')
print('basicWave:', self.basicWave)
if self.basicWave == 'Gaussian':
print(f'Half width: {self.alpha / np.pi * 1e12:.2f}ps')
elif self.basicWave == 'RaisedCosine' or self.basicWave == 'RC':
print('Alpha: ', self.alpha)
return self
def demodulator(self):
return Demodulator(self.bps, self.fs, self.filter)\
.setCorrectBits(self.raw, self.method[0])\
.setPadding(self.padding)
# Wave Generator for WDM
class WDMWaveGenerator(BasicWaveGenerator):
def __init__(self, bps=1e6, fs=1e8,
basicWave:Literal['Square', 'Gaussian', 'RaisedCosine', 'RC']='Gaussian',
alpha:float|Literal['auto']='auto',
freqCenter=0.0, freqInterval=5e10, channels=1):
self.setBps(bps).setFs(fs).setBasicWave(basicWave, alpha).setWDM(freqCenter, freqInterval, channels).addZero(0)
self.generated = False
def setWDM(self, freqCenter=0.0, freqInterval=5e10, channels=1):
self.freqCenter = freqCenter
self.freqInterval = freqInterval
self.channels = channels
self.freqs = np.linspace(0, self.freqInterval*(self.channels-1), self.channels) - self.freqInterval*(self.channels-1)/2 + self.freqCenter
self.fs = max(self.fs, 2 * np.max(self.freqs) + self.freqInterval)
return self
def setBits(self, bits):
self.raw = np.array(bits)
self.n = self.raw.shape[1]
return self
def zeroAdder(self, bits, n):
return np.pad(np.array(bits), ((0, 0), (n, n)), 'constant', constant_values=0)
def generator(self, bits):
self.waveform = np.zeros((self.N), dtype=complex)
for i in range(self.channels):
self.waveform += super().generator(bits[i, :]) * np.exp(1j * 2*np.pi*self.freqs[i] * self.t)
return self.waveform
def demodulator(self):
return WDMDemodulator(self.bps, self.fs, self.filter)\
.setCorrectBits(self.raw, self.method[0])\
.setPadding(self.padding)\
.setWDM(self.freqCenter, self.freqInterval, self.channels)
# Wave Generator for PDM
class PDMWaveGenerator(WDMWaveGenerator):
def setBits(self, xbits, ybits):
self.xbits = np.array(xbits)
self.ybits = np.array(ybits)
self.n = max(self.xbits.shape[-1], self.ybits.shape[-1])
self.xbits = np.pad(self.xbits, (0, self.n - self.xbits.shape[-1]), 'constant', constant_values=0)
self.ybits = np.pad(self.ybits, (0, self.n - self.ybits.shape[-1]), 'constant', constant_values=0)
return self
def addZero(self, n):
self.xbits = super().addZero(self.xbits, n)
self.ybits = super().addZero(self.ybits, n)
return self
def generate(self, freqType:Literal['all', 'freq', 'omega']='all'):
self.calcBasicInfo()
self.waveform = np.vstack((self.generator(self.xbits), self.generator(self.ybits)))
self.generated = True
return self.getWave(freqType)
def generator(self, bits):
return super().generator(bits)
def getWave(self, freqType:Literal['all', 'freq', 'omega']='all'):
if not self.generated:
self.generate()
if freqType == 'all':
return self.waveform, self.t, self.f, self.w
elif freqType == 'freq':
return self.waveform, self.t, self.f
elif freqType == 'omega':
return self.waveform, self.t, self.w
else:
print('Unknown frequency type')