-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
35 lines (28 loc) · 1.21 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author: XiaShan
@Contact: 153765931@qq.com
@Time: 2024/6/22 17:03
"""
from torch_geometric.datasets import Planetoid
def load_dataset(args):
"""
Name nodes features edges classes train val test
Cora 2708 1433 10556 7 140 500 1000
CiteSeer 3327 3703 9104 6 120 500 1000
PubMed 19717 500 88648 3 60 500 1000
"""
dataset = Planetoid(root='./dataset/Planetoid', name=args.dataset)
data = dataset[0]
return data
if __name__ == '__main__':
Cora = Planetoid(root='./dataset/Planetoid', name='Cora')
print(Cora[0])
print(Cora.train_mask.sum().item(), Cora.val_mask.sum().item(), Cora.test_mask.sum().item()) # 训练、验证及测试节点数
CiteSeer = Planetoid(root='./dataset/Planetoid', name='CiteSeer')
print(CiteSeer[0])
print(CiteSeer.train_mask.sum().item(), CiteSeer.val_mask.sum().item(), CiteSeer.test_mask.sum().item())
PubMed = Planetoid(root='./dataset/Planetoid', name='PubMed')
print(PubMed[0])
print(PubMed.train_mask.sum().item(), PubMed.val_mask.sum().item(), PubMed.test_mask.sum().item())