-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patheth_trial.py
168 lines (142 loc) · 5.64 KB
/
eth_trial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""Adapted from https://github.com/ysymyth/ReAct/blob/master/alfworld.ipynb"""
import os
import sys
import json
import yaml
import openai
import numpy as np
import time
import importlib
from utils import Model, get_chat
from eth_env import ETHTradingEnv
from env_history import EnvironmentHistory
from typing import List, Dict, Any, Tuple
def llm(prompt, model, seed):
try:
text = get_chat(prompt=prompt, model=model, seed=seed) # stop_strs=['\n']
return text
except Exception as e:
print(prompt)
print(e)
import sys
sys.exit(1)
def debug_print(s, response=None, title=''):
print(f'\n*** START {title} ***')
print(s)
if response is not None:
print(f'*** {title} RESPONSE ***')
print(response)
print(f'*** END {title} ***\n')
def eth_run(env, base_prompt, memory, starting_state, args):
to_print = args.to_print
model = args.model
seed = args.seed
if len(memory) > 3:
env_history = EnvironmentHistory(base_prompt, starting_state, memory[-3:], [], args)
else:
env_history = EnvironmentHistory(base_prompt, starting_state, memory, [], args)
if to_print:
print_state = {k: v for k, v in starting_state.items() if k != 'news'}
debug_print(print_state, None, 'STATE')
cur_step = 0
returns = []
done = False
while not done:
use_news = args.use_news
use_reflection = args.use_reflection
price_s, news_s, reflection_s, template_s = env_history.get_prompt()
onchain_analysis = llm(price_s, model, seed).strip()
if to_print:
print(f"********* START STEP {cur_step} *********")
debug_print(price_s, onchain_analysis, 'ONCHAIN ANALYST')
if use_news:
news_analysis = llm(news_s, model, seed).strip()
if to_print:
debug_print(news_s, news_analysis, 'NEWS ANALYST')
else:
news_analysis = 'N/A'
if use_reflection:
reflection = llm(reflection_s, model, seed).strip()
if to_print:
debug_print(reflection_s, reflection, 'REFLECTION ANALYST')
else:
reflection = 'N/A'
trader_prompt = template_s.format(onchain_analysis, news_analysis, reflection)
trader_response = llm(trader_prompt, model, seed).strip()
if to_print:
debug_print(trader_prompt, trader_response, 'TRADER')
state, reward, done, info = env.step(trader_response)
raw_action = info['raw_action']
actual_action = f"{info['actual_action']:.1f}"
env_history.add("trader_response", trader_response)
env_history.add("action", actual_action)
env_history.add("state", state)
returns.append(state['today_roi'])
if to_print:
print_state = {k: v for k, v in state.items() if k != 'news'}
debug_print(actual_action, None, 'ACTUAL ACTION')
debug_print(print_state, None, 'STATE')
total_return = state['roi']
tmp_returns = np.array(returns) * 100
return_mean = np.mean(tmp_returns)
return_std = np.std(tmp_returns)
risk_free_rate = 0 # same as sociodojo
sharpe_ratio = (return_mean - risk_free_rate) / return_std
daily_result = f'Total return: {total_return*100:.2f}, sharpe ratio: {sharpe_ratio:.2f}, daily return mean: {return_mean:.2f}, daily return std: {return_std:.2f}'
debug_print(daily_result, None, 'CURRENT RESULT')
cur_step += 1
time.sleep(1)
is_success = total_return > 0.1 # modify sucess condition
return env_history, is_success
def run_trial(
trial_log_path,
world_log_path,
trial_idx,
env_configs: List[Dict[str, Any]],
args,
) -> List[Dict[str, Any]]:
use_memory = args.use_memory
env = ETHTradingEnv(args)
num_successes: int = 0
num_additional_successes: int = 0
num_envs: int = len(env_configs)
for z, env_config in enumerate(env_configs):
starting_state, reward, done, info = env.reset()
if env_config["is_success"]:
num_successes += 1
with open(world_log_path, 'a') as wf:
wf.write(f'Environment #{z} Trial #{trial_idx}: SUCCESS\n')
with open(trial_log_path, 'a') as wf:
wf.write(f'\n#####\n\nEnvironment #{z}: Success\n\n#####\n')
continue
final_env_history, is_success = eth_run(env, '', env_config["memory"] if use_memory else [], starting_state, args=args)
# update env config
if is_success:
status_str: str = f'Environment #{z} Trial #{trial_idx}: SUCCESS'
env_configs[z]['is_success'] = True
num_successes += 1
num_additional_successes += 1
else:
status_str: str = f'Environment #{z} Trial #{trial_idx}: FAIL'
# log to world log
with open(world_log_path, 'a') as f:
f.write(status_str + '\n')
# log env results to trial log
with open(trial_log_path, 'a') as wf:
wf.write(f'\n#####\n\nEnvironment #{z}:\n{str(final_env_history)}\n\nSTATUS: {"OK" if is_success else "FAIL"}\n\n#####\n')
# close environment object
env.close()
# log trial results to trial and world logs
log_str: str = f"""
-----
SUCCESS: {num_successes}
ADDITIONAL SUCCESS: {num_additional_successes}
FAIL: {num_envs - num_successes}
TOTAL: {num_envs}
ACCURACY: {round(num_successes / num_envs, 2)}
-----"""
with open(trial_log_path, 'a') as wf:
wf.write(log_str)
with open(world_log_path, 'a') as wf:
wf.write(log_str + '\n')
return env_configs