-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_baseline.py
408 lines (328 loc) · 14.2 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# preprocess table and run baseline
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from collections import defaultdict
from eth_env import ETHTradingEnv
from argparse import Namespace
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear_model import LinearRegression
import torch
import torch.nn as nn
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import DataLoader, TensorDataset
device = 'cuda:7'
BUY, SELL = 0.5, -0.5
# BUY, SELL = 1, -1
FULL_BUY, FULL_SELL = 1, -1
strategies = ['SMA', 'MACD']
# strategies = ['SMA', 'MACD', 'SLMA', 'BollingerBands', 'buy_and_hold', 'optimal', 'LSTM', 'Multimodal']
sma_periods = [5, 10, 15, 20, 30]
# dates = ['2022-02-01','2023-02-01', '2024-02-01']
dates = ['2023-02-01','2023-08-01', '2024-02-01']
# dates = ['2023-12-01','2024-01-01', '2024-02-01']
VAL_START, VAL_END = dates[-3], dates[-2]
TEST_START, TEST_END = dates[-2], dates[-1]
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
df = pd.read_csv('data/eth_daily.csv')
df['date'] = pd.to_datetime(df['snapped_at'])
# SMA
for period in sma_periods:
df[f'SMA_{period}'] = df['open'].rolling(window=period).mean()
df[f'STD_{period}'] = df['open'].rolling(window=period).std()
# MACD and Signal Line
df['EMA_12'] = df['open'].ewm(span=12, adjust=False).mean()
df['EMA_26'] = df['open'].ewm(span=26, adjust=False).mean()
df['MACD'] = df['EMA_12'] - df['EMA_26']
df['Signal_Line'] = df['MACD'].ewm(span=9, adjust=False).mean()
# dataset stats
for mi in range(len(dates)-1):
starting_date = dates[mi]
ending_date = dates[mi+1]
y, m, _ = starting_date.split('-')
df_m = df[(df['date'] >= starting_date) & (df['date'] <= ending_date)]
print(f'{starting_date} to {ending_date} length:', len(df_m))
stat = [df_m.iloc[0]['open'], df_m['open'].max(), df_m['open'].min(), df_m.iloc[-1]['open']]
print('open, max, min, close:', [f'{s:.2f}' for s in stat])
# df_m.to_csv(f'data/eth_f'{y}{m}'.csv', index=False)
print()
# # create dataset code for lstm
# def create_dataset(dataset, look_back=1):
# X, Y = [], []
# for i in range(len(dataset)-look_back):
# a = dataset[i:(i+look_back), 0]
# X.append(a)
# Y.append(dataset[i + look_back, 0])
# return np.array(X), np.array(Y)
def create_dataset(dataset, look_back=5):
X, Y = [], []
for i in range(len(dataset)-look_back):
a = dataset[i:(i+look_back), :]
X.append(a)
Y.append(dataset[i + look_back, 0])
return torch.tensor(np.array(X), dtype=torch.float32), torch.tensor(np.array(Y), dtype=torch.float32).view(-1, 1)
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, num_layers, output_dim):
super(LSTMModel, self).__init__()
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_().to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).requires_grad_().to(x.device)
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
# # LSTM strategy function
# def lstm_strategy(df, start_date, end_date, look_back=1):
# # Filter the data
# data = df[(df['date'] >= start_date) & (df['date'] <= end_date)]
# data = data['open'].values.reshape(-1, 1)
# # Scale the data
# scaler = MinMaxScaler(feature_range=(0, 1))
# data_scaled = scaler.fit_transform(data)
# # Create the dataset
# X, Y = create_dataset(data_scaled, look_back)
# # dataset = TensorDataset(X, Y)
# # Reshape X for sklearn compatibility
# X = X.reshape(X.shape[0], look_back)
# # Split the data into training and test sets
# train_size = int(len(X) * 0.67)
# trainX, trainY = X[:train_size], Y[:train_size]
# # Define and train the linear regression model
# model = LinearRegression()
# model.fit(trainX, trainY)
# # Make predictions
# last_train_batch = trainX[-1:].reshape(1, look_back)
# next_day_prediction = model.predict(last_train_batch)
# next_day_prediction = scaler.inverse_transform(next_day_prediction.reshape(-1, 1))
# current_price = scaler.inverse_transform(trainY[-1].reshape(-1, 1))
# # Decide action based on prediction, buy, sell or hold
# if next_day_prediction > current_price:
# action = 'Buy'
# elif next_day_prediction < current_price:
# action = 'Sell'
# else:
# action = 0
# return action
def lstm_strategy(df, start_date, end_date, look_back=5):
# Filter the data
data = df[(df['date'] >= start_date) & (df['date'] <= end_date)]
data = data['open'].values.reshape(-1, 1)
# Scale the data
scaler = MinMaxScaler(feature_range=(0, 1))
data_scaled = scaler.fit_transform(data)
# Assuming `data_scaled` is your scaled dataset as a NumPy array
X, Y = create_dataset(data_scaled, look_back)
dataset = TensorDataset(X, Y)
train_loader = DataLoader(dataset, batch_size=64, shuffle=True)
# Initialize the model, loss function, and optimizer
model = LSTMModel(input_dim=1, hidden_dim=100, num_layers=2, output_dim=1).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Training loop
num_epochs = 100
for epoch in range(num_epochs):
for inputs, targets in train_loader:
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
if epoch % 10 == 0:
print(f'Epoch {epoch}, Loss: {loss.item()}')
# Prepare the last training batch for prediction
last_sequence = data_scaled[-look_back:] # Get the last 'look_back' sequences
last_sequence = torch.tensor(last_sequence, dtype=torch.float32).unsqueeze(0).to(device) # Add batch dimension
with torch.no_grad():
model.eval()
next_day_prediction = model(last_sequence) # Predict
next_day_prediction = next_day_prediction.cpu() # Convert to NumPy array
next_day_prediction = scaler.inverse_transform(next_day_prediction.numpy()) # Scale back to original range
current_price = scaler.inverse_transform([[Y[-1].item()]])
action = 'Hold' # Default action
if next_day_prediction > current_price:
action = 'Buy'
elif next_day_prediction < current_price:
action = 'Sell'
else:
action = 0
return action
# 1st strategy: Simple MA
# when the asset's open price is below the its SMA, and the volume is above the its SMA it's a buying signal, and vice versa for selling.
# 2nd strategy: MACD
# MACD = 12-day EMA - 26-day EMA
# Signal Line = 9-day EMA of MACD
# When MACD crosses above the signal line, it's a buying signal, and vice versa for selling.
# 3rd strategy: short and long strategy (SLMA) - If the short period SMA is below the long period SMA, it means that the trend is going down, so it's a sell signal, it's also known as the death cross.
# Otherwise, the trend is shiftting up, and it's a buy signal, it's also called the golden cross.
# 4th strategy: Bollinger Bands
def run_strategy(strategy, sargs):
env = ETHTradingEnv(Namespace(starting_date=sargs['starting_date'], ending_date=sargs['ending_date']))
df_tmp = df[(df['date'] >= sargs['starting_date']) & (df['date'] <= sargs['ending_date'])]
df_tmp.reset_index(drop=True, inplace=True)
state, reward, done, info = env.reset() # only use env to act and track profit
starting_net_worth = state['net_worth']
irrs = []
previous_signal = None # Track the previous day signal
previous_net_worth = starting_net_worth
# Iterate through each row in the DataFrame to simulate trading
for index, row in df_tmp.iterrows():
open_price = state['open']
cash = state['cash']
eth_held = state['eth_held']
net_worth = state['net_worth']
date = row['date']
y, m, d = date.year, date.month, date.day
irrs.append((net_worth / previous_net_worth) - 1)
previous_net_worth = net_worth
if done:
break
if strategy == 'SMA':
period = sargs['period']
sma_column = f'SMA_{period}'
current_signal = 'hold'
if open_price > row[sma_column]: # golden cross?
# current_signal = 'sell'
current_signal = 'buy'
elif open_price < row[sma_column]: # death cross?
# current_signal = 'buy'
current_signal = 'sell'
action = 0
# if current_signal != previous_signal:
if True:
if current_signal == 'buy' and cash > 0:
action = BUY
elif current_signal == 'sell' and eth_held > 0:
action = SELL
previous_signal = current_signal
elif strategy == 'SLMA':
short = sargs['short']
long = sargs['long']
current_signal = 'hold'
if row[short] > row[long]: # golden cross?
current_signal = 'buy'
elif row[short] < row[long]: # death cross?
current_signal = 'sell'
action = 0
# if current_signal != previous_signal:
if True:
if current_signal == 'buy':
action = BUY
elif current_signal == 'sell' and eth_held > 0:
action = SELL
previous_signal = current_signal
elif strategy == 'MACD':
current_signal = 'hold'
if row['MACD'] < row['Signal_Line']:
current_signal = 'buy'
elif row['MACD'] > row['Signal_Line']:
current_signal = 'sell'
action = 0
# if current_signal != previous_signal:
if True:
if current_signal == 'buy' and cash > 0:
action = BUY
elif current_signal == 'sell' and eth_held > 0:
action = SELL
previous_signal = current_signal
elif strategy == 'BollingerBands':
period = sargs['period'] # e.g., 20 for a 20-day SMA
multiplier = sargs['multiplier'] # Commonly set to 2
sma = row[f'SMA_{period}']
sd = row[f'STD_{period}']
upper_band = sma + (sd * multiplier)
lower_band = sma - (sd * multiplier)
current_signal = 'hold'
if open_price < lower_band:
current_signal = 'buy'
elif open_price > upper_band:
current_signal = 'sell'
action = 0
# if current_signal != previous_signal:
if True:
if current_signal == 'buy' and cash > 0:
action = BUY
elif current_signal == 'sell' and eth_held > 0:
action = SELL
previous_signal = current_signal
elif strategy == 'buy_and_hold':
action = 0
if cash > 0:
action = FULL_BUY
# here to add LSTM strategy
elif strategy == 'LSTM':
action = lstm_strategy(df, sargs['starting_date'], sargs['ending_date'], look_back=5)
if action == 'Buy' and cash > 0:
action = BUY
elif action == 'Sell' and eth_held > 0:
action = SELL
else:
action = 0
elif strategy == 'optimal':
next_open = df_tmp.iloc[index+1]['open']
if open_price < next_open:
action = FULL_BUY
elif open_price > next_open:
action = FULL_SELL
else:
action = 0
else:
raise ValueError('Invalid strategy')
state, reward, done, info = env.step(action)
net_worth = state['net_worth']
total_irr = (net_worth / starting_net_worth) - 1
irrs = np.array(irrs) * 100
irr_mean = np.mean(irrs)
irr_std = np.std(irrs)
risk_free_rate = 0 # same as sociodojo
result = {
'total_irr': total_irr,
'sharp_ratio': (irr_mean - risk_free_rate) / irr_std,
}
result_str = f'Total IRR: {total_irr*100:.2f} %, Sharp Ratio: {result["sharp_ratio"]:.2f}'
print(result_str)
# strategy = 'LSTM'
# print(strategy)
# run_strategy(strategy, {'starting_date': TEST_START, 'ending_date': TEST_END})
strategy = 'optimal'
print(strategy)
run_strategy(strategy, {'starting_date': TEST_START, 'ending_date': TEST_END})
strategy = 'buy_and_hold'
print(strategy)
run_strategy(strategy, {'starting_date': TEST_START, 'ending_date': TEST_END})
strategy = 'SMA'
for period in sma_periods:
sargs = {'period': period, 'starting_date': VAL_START, 'ending_date': VAL_END}
print(f'{strategy}, Period: {period}')
run_strategy(strategy, sargs)
period = 15
print(f'{strategy}, Period: {period}')
sargs = {'period': period, 'starting_date': TEST_START, 'ending_date': TEST_END}
run_strategy(strategy, sargs)
strategy = 'SLMA'
for i in range(len(sma_periods)-1):
for j in range(i+1, len(sma_periods)):
short = f'SMA_{sma_periods[i]}'
long = f'SMA_{sma_periods[j]}'
sargs = {'short': short, 'long': long, 'starting_date': VAL_START, 'ending_date': VAL_END}
print(f'{strategy}, Short: {short}, Long: {long}')
run_strategy(strategy, sargs)
short, long = 'SMA_15', 'SMA_30'
sargs = {'short': short, 'long': long, 'starting_date': TEST_START, 'ending_date': TEST_END}
print(f'{strategy}, Short: {short}, Long: {long}')
run_strategy(strategy, sargs)
strategy = 'MACD'
sargs = {'starting_date': TEST_START, 'ending_date': TEST_END}
print(f'{strategy}')
run_strategy(strategy, sargs)
strategy = 'BollingerBands'
period = 20
multiplier = 2
sargs = {'period': period, 'multiplier': multiplier, 'starting_date': TEST_START, 'ending_date': TEST_END}
print(f'{strategy}, Period: {period}, Multiplier: {multiplier}')
run_strategy(strategy, sargs)