-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathanomaly_detection.py
134 lines (119 loc) · 5.77 KB
/
anomaly_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import networkx as nx
from Graph import Graph
# Train on CPU (hide GPU) due to memory constraints
os.environ['CUDA_VISIBLE_DEVICES'] = ""
from constructor import get_placeholder, update
from input_data import format_data
from sklearn.metrics import roc_auc_score
from model import *
from optimizer import *
from layers import *
# Settings
flags = tf.compat.v1.flags
FLAGS = flags.FLAGS
def precision_AT_K(actual, predicted, k, num_anomaly):
act_set = np.array(actual[:k])
pred_set = np.array(predicted[:k])
ll = act_set & pred_set
tt = np.where(ll == 1)[0]
prec = len(tt) / float(k)
rec = len(tt) / float(num_anomaly)
return round(prec, 4), round(rec, 4)
class AnomalyDetectionRunner():
def __init__(self, settings):
self.data_name = settings['data_name']
self.iteration = settings['iterations']
self.model = settings['model']
self.decoder_act = settings['decoder_act']
self.detection_method = settings['detection_method']
self.at=settings['baln']
def erun(self, writer):
model_str = self.model
# load data
feas = format_data(self.data_name)
print("feature number: {}".format(feas['num_features']))
# Define placeholders
placeholders = get_placeholder()
num_features = feas['num_features']
features_nonzero = feas['features_nonzero']
num_nodes = feas['num_nodes']
adj = feas['adj']
m = 171743#239738 flikr #71980 acm#171743 blog
my_graph = Graph()
my_graph.load_graph_from_weighted_edgelist('./data/BlogCatalog/BlogCatalog.edgelist')
if self.detection_method == 'infomap':
my_graph.infomap()
elif self.detection_method == 'lpa':
my_graph.lpa()
x_1, y_1 = my_graph.output_data()
print(x_1.shape,'!!!!@@@@@@@@@@@@@@@@@@@@')
k1 = np.sum(x_1, axis=1)
k2 = k1.reshape(k1.shape[0], 1)
k1k2 = k1 * k2
Eij = k1k2 / (2 * m)
B =np.array(x_1 - Eij)
#print(B.shape,'NNNNNNNNNNNNNNNNNNNNNNN')
#-----------------------------------------------------read_graph(folder + 'citeseer.edgelist')
if model_str == 'Dominant':
model = GCNModelAE(placeholders,num_features,num_nodes,adj,features_nonzero,2000,500,128,256,128,self.at)
opt = OptimizerAE(preds_community=model.community_reconstructions,
labels_community=model.B,
z_mean=model.z,
z_arg=model.z_a,
preds_attribute=model.attribute_reconstructions,
labels_attribute=tf.sparse_tensor_to_dense(placeholders['features']),
preds_structure=model.structure_reconstructions,
labels_structure=tf.sparse_tensor_to_dense(placeholders['adj_orig']),
alpha=FLAGS.alpha,
eta=FLAGS.eta, theta=FLAGS.theta,num_nodes=num_nodes)
elif model_str == 'AnomalyDAE':
model = AnomalyDAE(placeholders, num_features, num_nodes, features_nonzero, self.decoder_act)
opt = OptimizerDAE(preds_attribute=model.attribute_reconstructions,
labels_attribute=tf.sparse_tensor_to_dense(placeholders['features']),
preds_structure=model.structure_reconstructions,
labels_structure=tf.sparse_tensor_to_dense(placeholders['adj_orig']), alpha=FLAGS.alpha,
eta=FLAGS.eta, theta=FLAGS.theta)
# Initialize session
sess = tf.Session()
sess.run(tf.global_variables_initializer())
tf.reset_default_graph()
AVER_auc=0
# Train model
for epoch in range(1, self.iteration+1):
train_loss, re_loss,kl_loss,loss_stru, loss_attr, rec_error = update(model, opt, sess,
feas['adj_norm'],
feas['adj_label'],
feas['features'],
placeholders, feas['adj'],B )
if epoch % 1 == 0:
y_true = [label[0] for label in feas['labels']]
#print(y_true,'111111SSSSSSSSSSSSS')
auc=0
try:
scores = np.array(rec_error)
scores = (scores - np.min(scores)) / (
np.max(scores) - np.min(scores))
#print(scores,'2222222222##########')
auc = roc_auc_score(y_true, scores)
AVER_auc = AVER_auc + auc
except Exception:
print("[ERROR] for auc calculation!!!")
print("Epoch:", '%04d' % (epoch),
"AUC={:.5f}".format(round(auc,4)),
#"train_loss={:.5f}".format(train_loss),
#"re_loss={:.5f}".format(re_loss),
"kl_loss={:.5f}".format(kl_loss),
"loss_struc={:.5f}".format(loss_stru),
"loss_attr={:.5f}".format(loss_attr))
#writer.add_scalar('loss_total', train_loss, epoch)
#writer.add_scalar('loss_re', re_loss, epoch)
writer.add_scalar('loss_kl', kl_loss, epoch)
writer.add_scalar('loss_struc', loss_stru, epoch)
writer.add_scalar('loss_attr', loss_attr, epoch)
writer.add_scalar('auc', auc, epoch)
Aver = AVER_auc / self.iteration
print(Aver, 'XXXXXXXXXXXXXXXXXXXXXXX')