-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathapp.py
90 lines (53 loc) · 1.88 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import sys
# Flask
from flask import Flask, request, render_template, Response, jsonify
#from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# TensorFlow and tf.keras
#import tensorflow as tf
#from tensorflow import keras
from tensorflow.keras.applications.imagenet_utils import preprocess_input
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# Some utilites
import numpy as np
from util import base64_to_pil
# Declare a flask app
app = Flask(__name__)
#print('Model loaded. Check http://127.0.0.1:5000/')
MODEL_PATH = 'models/oldModel.h5'
model = load_model(MODEL_PATH)
print('Model loaded. Start serving...')
def model_predict(img, model):
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x, mode='tf')
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
if request.method == 'POST':
# Get the image from post request
img = base64_to_pil(request.json)
img.save("uploads\image.jpg")
img_path = os.path.join(os.path.dirname(__file__),'uploads\image.jpg')
os.path.isfile(img_path)
img = image.load_img(img_path, target_size=(64,64))
preds = model_predict(img, model)
result = preds[0,0]
print(result)
if result >0.5:
return jsonify(result="PNEMONIA")
else:
return jsonify(result="NORMAL")
return None
if __name__ == '__main__':
app.run(port=5002, threaded=False)
# Serve the app with gevent
http_server = WSGIServer(('0.0.0.0', 5000), app)
http_server.serve_forever()