diff --git a/velovi/_model.py b/velovi/_model.py index e75b98b..e5f1115 100644 --- a/velovi/_model.py +++ b/velovi/_model.py @@ -49,6 +49,7 @@ class VELOVI(VAEMixin, UnsupervisedTrainingMixin, BaseModelClass): Use a linear decoder from latent space to time. **model_kwargs Keyword args for :class:`~velovi.VELOVAE` + """ def __init__( @@ -163,6 +164,7 @@ def train( `train()` will overwrite values present in `plan_kwargs`, when appropriate. **trainer_kwargs Other keyword args for :class:`~scvi.train.Trainer`. + """ user_plan_kwargs = plan_kwargs.copy() if isinstance(plan_kwargs, dict) else {} plan_kwargs = {"lr": lr, "weight_decay": weight_decay, "optimizer": "AdamW"} @@ -236,6 +238,7 @@ def get_state_assignment( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) scdl = self._make_data_loader( @@ -340,6 +343,7 @@ def get_latent_time( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) if indices is None: @@ -482,6 +486,7 @@ def get_velocity( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) if indices is None: @@ -656,6 +661,7 @@ def get_expression_fit( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) @@ -811,6 +817,7 @@ def get_gene_likelihood( ------- If `n_samples` > 1 and `return_mean` is False, then the shape is `(samples, cells, genes)`. Otherwise, shape is `(cells, genes)`. In this case, return type is :class:`~pandas.DataFrame` unless `return_numpy` is True. + """ adata = self._validate_anndata(adata) scdl = self._make_data_loader( @@ -917,6 +924,7 @@ def setup_anndata( Returns ------- %(returns)s + """ setup_method_args = cls._get_setup_method_args(**locals()) anndata_fields = [ @@ -967,6 +975,7 @@ def get_permutation_scores( ------- Tuple of DataFrame and AnnData. DataFrame is genes by cell types with score per cell type. AnnData is the permutated version of the original AnnData. + """ adata = self._validate_anndata(adata) adata_manager = self.get_anndata_manager(adata) @@ -1090,6 +1099,7 @@ def _directional_statistics_per_cell( ---------- tensor Shape of samples by genes for a given cell. + """ n_samples = tensor.shape[0] # over samples axis diff --git a/velovi/_module.py b/velovi/_module.py index 2515b16..9a7ec9a 100644 --- a/velovi/_module.py +++ b/velovi/_module.py @@ -1,4 +1,5 @@ """Main module.""" + from typing import Callable, Iterable, Literal, Optional import numpy as np @@ -44,6 +45,7 @@ class DecoderVELOVI(nn.Module): Whether to use layer norm in layers linear_decoder Whether to use linear decoder for time + """ def __init__( @@ -183,6 +185,7 @@ class VELOVAE(BaseModuleClass): var_activation Callable used to ensure positivity of the variational distributions' variance. When `None`, defaults to `torch.exp`. + """ def __init__( diff --git a/velovi/_utils.py b/velovi/_utils.py index bfffbeb..d16cc48 100644 --- a/velovi/_utils.py +++ b/velovi/_utils.py @@ -56,6 +56,7 @@ def preprocess_data( Returns ------- Preprocessed adata. + """ if min_max_scale: scaler = MinMaxScaler()