|
51 | 51 | \hangafter=0
|
52 | 52 | \noindent
|
53 | 53 | \textbf{2.}
|
54 |
| - 设\(r=\sqrt{x^2+y^2+z^2}\),则\(\ds \nabla u = \left(\pdv{u}{x},\pdv{u}{y},\pdv{u}{z}\right) = \left(\frac{x}{r},\frac{y}{r},\frac{z}{r}\right)\). |
55 |
| - |
| 54 | + 设\(r=\sqrt{x^2+y^2+z^2}\),则\(\ds \nabla u = \left(\pdv{u}{x},\pdv{u}{y},\pdv{u}{z}\right) = \left(\frac{y^2 + z^2}{r^3},\frac{y}{r},\frac{z}{r}\right)\),所以 |
| 55 | + \[\eval{\ds \nabla u = \left(\pdv{u}{x},\pdv{u}{y},\pdv{u}{z}\right)}_{(1, 2, 3)} =(\dfrac{13}{14\sqrt{14}}, \dfrac{2}{\sqrt{14}}, \dfrac{3}{\sqrt{14}}).\] |
56 | 56 | 曲线在\(P_0\)点的方向向量为\(\ds \vec{l} = \eval{\left(x'(t),y'(t),z'(t)\right)}_{(1,2,3)} = (1,4,12)\),其单位向量为\(\vec{l}_0 = \dfrac{\vec{l}}{\lvert\vec{l}\rvert} = \dfrac{(1,4,12)}{\sqrt{161}}\).
|
57 |
| - 那么\[\pdv{u}{\vec{l}} = \vec{l}_0\cdot\nabla u = \frac{45}{7\sqrt{46}}.\] |
| 57 | + 那么\[\pdv{u}{\vec{l}} = \vec{l}_0\cdot\nabla u = \frac{629}{98\sqrt{46}}.\] |
58 | 58 |
|
59 | 59 | \clearpage
|
60 |
| -\noindent{\heiti\textbf{三、}} 重积分、曲线积分和曲面积分的计算 |
| 60 | +\noindent{\heiti\textbf{三、}} 积分的计算 |
61 | 61 |
|
62 | 62 | \hangindent 2em
|
63 | 63 | \hangafter=0
|
|
82 | 82 | 所以
|
83 | 83 | \begin{equation*}
|
84 | 84 | \begin{split}
|
85 |
| - \oint\limits_{L}(x^2+y^2+z^2)\dd{s} &= \int_{0}^{2\pi}(\sin^2\theta+\cos\theta)\dd{\theta}\\ |
| 85 | + \oint\limits_{L}(x^2+y^2+z)^2\dd{s} &= \int_{0}^{2\pi}(\sin^2\theta+\cos\theta)^2\dd{\theta}\\ |
86 | 86 | &= \int_{-\pi}^{\pi}(\sin^2\alpha-\cos\alpha)^2\dd{\alpha}\enspace(\theta = \pi+\alpha)\\
|
87 | 87 | &= 2\int_{0}^{\pi}(\sin^2\alpha-\cos\alpha)^2\dd{\alpha}\\
|
88 | 88 | &= 2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos^2\beta+\sin\beta)^2\dd{\beta}\enspace(\alpha = \frac{\pi}{2}+\beta)\\
|
|
113 | 113 | \textbf{4.}
|
114 | 114 | 考虑椭球面的参数表示:\(x = \sin\varphi\cos\theta, y = 2\sin\varphi\sin\theta, z = 3\cos\varphi\),其中\(\varphi\in[0,\frac{\pi}{2}],\theta\in[0,2\pi]\).
|
115 | 115 | 计算可知\[\frac{\partial(x,y)}{\partial(\varphi,\theta)} = 2\sin\varphi\cos\varphi = \sin 2\varphi\geqslant0,\frac{\partial (y,z)}{\partial(\varphi,\theta)} = 6\sin^2\varphi\cos\theta.\]
|
116 |
| - 由左式可知,参数\((\varphi,\theta)\)决定的法向量是外侧的,由第二类曲面积分的定义: |
| 116 | + 由左式可知,参数\((\varphi,\theta)\)决定的法向量是上侧的,与曲线定向同向,由第二类曲面积分的定义: |
117 | 117 | \begin{equation*}
|
118 | 118 | \begin{split}
|
119 | 119 | \iint\limits_{S}x^3\dd{y}\dd{z} &=\int\limits_{D_{\varphi\theta}}\sin^3\varphi\cos^3\theta\cdot 6\sin^2\varphi\cos\theta\dd{\varphi}\dd{\theta}\\
|
|
224 | 224 | \hangindent 2em
|
225 | 225 | \hangafter=0
|
226 | 226 | \noindent
|
227 |
| - 本题题干有误,应为:\(F(x,y)\)在带状区域\(x\in[a,b]\)存在连续一阶偏导,\(F_x(x,y)\)有正值下界,证明:在\((x_0,y_0)\)附近可以由\(F(x_0,y_0) = 0\)唯一确定一个隐函数\(y = f(x)\). |
| 227 | + 本题题干有误,应为:\(F(x,y)\)在带状区域\(x\in[a,b]\)存在连续一阶偏导,\(F_y(x,y)\)有正值下界,证明:在\((x_0,y_0)\)附近可以由\(F(x_0,y_0) = 0\)唯一确定一个隐函数\(y = f(x)\). |
| 228 | + |
| 229 | + 默写隐函数定理的证明则可. |
228 | 230 |
|
229 | 231 | \noindent{\heiti\textbf{八、}} 函数项级数
|
230 | 232 |
|
|
233 | 235 | \noindent
|
234 | 236 | \textbf{1.}
|
235 | 237 | 设\[f(x) = \cos(\dfrac{\pi}{2}x^{\frac{1}{n}}) - \dfrac{\pi}{n}(1-x), x\in\left[\frac{1}{2}, 1\right].\]
|
236 |
| - 由\(\sin x\geqslant \dfrac{2}{\pi}x\),对\(f(x)\)求导得\[f'(x) = \frac{\pi}{2n}\left(2-x^{\frac{1}{n}-1}\sin(\frac{\pi}{2}x^{\frac{1}{n}})\right)\geqslant\frac{\pi}{2n}\left(2-x^{\frac{1}{n}-1}\frac{2}{\pi}\cdot\frac{\pi}{2}x^{\frac{1}{n}}\right)\geqslant\frac{\pi}{2n}(2-(1/2)^{-1}) = 0.\] |
| 238 | + 由\(\sin x\leqslant \dfrac{\pi}{2 x}\),对\(f(x)\)求导得\[f'(x) = \frac{\pi}{2n}\left(2-x^{\frac{1}{n}-1}\sin(\frac{\pi}{2}x^{\frac{1}{n}})\right) |
| 239 | + \geqslant\frac{\pi}{2n}\left(2-x^{\frac{1}{n}-1}\frac{\pi}{2}\cdot\frac{2}{\pi}x^{-\frac{1}{n}}\right)\geqslant\frac{\pi}{2n}(2-(1/2)^{-1}) = 0.\] |
237 | 240 | 所以\(f(x)\)在\(\left[\dfrac{1}{2}, 1\right]\)上单调递增,且\(f(1) = 0\),所以\(f(x)\leqslant0\),即\[\cos(\frac{\pi}{2}x^{\frac{1}{n}})\leqslant\frac{\pi}{n}(1-x), x\in\left[\dfrac{1}{2}, 1\right].\]
|
238 | 241 |
|
239 | 242 | \hangindent 2em
|
|
0 commit comments