forked from tyfei0216/ionChannel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatautils.py
114 lines (91 loc) · 3.16 KB
/
datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
from pytorch_lightning.utilities.types import EVAL_DATALOADERS
import torch
import numpy as np
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tqdm import tqdm
from datetime import date
import pytorch_lightning as L
import re
import pytorch_lightning as L
tqdm.pandas()
def parseline(line):
try:
line = line.decode("utf-8").strip()
except:
return None
if line.startswith(">"):
return line
line = re.sub("[^a-z,A-Z]", "", line)
return line
# inspired by esm.data.readfasta
def readFasta(path, to_upper=True, truclength=1500):
with open(path, "rb") as f:
line = None
seq = []
for t in f:
t = parseline(t)
if t is None:
line = None
continue
if line is None:
if not t.startswith(">"):
continue
else:
line = t
continue
if t.startswith(">"):
s = "".join(seq)
seq = []
if len(s) > 0:
if to_upper:
s = s.upper()
if truclength is not None:
s = s[:truclength]
yield line[1:], s
line = t
seq.append(t)
class SeqDataset2(Dataset):
def __init__(self, seq, label, seqtest):
self.seq = torch.tensor(seq).long()
self.label = torch.tensor(label).long()
self.seqtest = torch.tensor(seqtest).long()
self.seqlen = seq.shape[0]
self.seqtestlen = seqtest.shape[0]
def __len__(self):
return max(self.seqlen, self.seqtestlen)
def __getitem__(self, idx):
return self.seq[idx%self.seqlen], self.label[idx%self.seqlen], self.seqtest[idx%self.seqtestlen]
class TestDataset(Dataset):
def __init__(self, seq):
self.seq = torch.tensor(seq).long()
def __len__(self):
return self.seq.shape[0]
def __getitem__(self, idx):
return self.seq[idx]
class SeqDataset(Dataset):
def __init__(self, seq, label):
self.seq = torch.tensor(seq).long()
self.label = torch.tensor(label).long()
def __len__(self):
return self.seq.shape[0]
def __getitem__(self, idx):
return self.seq[idx], self.label[idx]
class SeqdataModule(L.LightningDataModule):
def __init__(self, trainset, testset, batch_size = 32) -> None:
super().__init__()
train_set, val_set = torch.utils.data.random_split(trainset, [0.8, 0.2])
self.train_set = train_set
self.test_set = testset
self.val_set = val_set
self.batch_size = batch_size
# def setup(self, ):
# pass
def train_dataloader(self):
return DataLoader(self.train_set, batch_size=self.batch_size, shuffle=True)
def val_dataloader(self):
return DataLoader(self.val_set, batch_size=self.batch_size, shuffle=True)
def test_dataloader(self):
return DataLoader(self.val_set, batch_size=self.batch_size, shuffle=True)