-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
385 lines (314 loc) · 14.7 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# THIS FILE SHOULD NOT BE CHANGED
# Description:
# This file should be used for computing scores for each of the project topics
# Usage: python evaluation.py <project_code> <path_2_output_predictions>
import sys
import os
from skimage import io, color
from sklearn.metrics import f1_score
from sklearn.metrics import average_precision_score
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import pandas as pd
import numpy as np
############## DET ##########################################################################
def iou_bboxs(bbox1, bbox2):
# input bboxes
b1_x_min, b1_y_min, b1_x_max, b1_y_max = bbox1
b2_x_min, b2_y_min, b2_x_max, b2_y_max = bbox2
# intersection area
intersection_width = min(b1_x_max, b2_x_max) - max(b1_x_min, b2_x_min)
intersection_height = min(b1_y_max, b2_y_max) - max(b1_y_min, b2_y_min)
# if no intersection
if intersection_width <= 0 or intersection_height <= 0:
return 0
intersection_area = intersection_width * intersection_height
# union area
box1_area = (b1_x_max - b1_x_min) * (b1_y_max - b1_y_min)
box2_area = (b2_x_max - b2_x_min) * (b2_y_max - b2_y_min)
union_area = box1_area + box2_area - intersection_area
# calculate IoU
iou = intersection_area / union_area
return iou
def map_ref_pred(ref_boxes, pred_boxes, mapping, reverse_mapping, all_confs, epsilon=0.5):
'''
Match the reference boxes to the predictions and vice versa.
Boxes are only matched if they have IoU over epsilon.
'''
for ref_idx, ref_box in ref_boxes.iterrows():
ref_name = f'{ref_box["filename"]}_{ref_box["object_id"]}'
ref_bbox = [ref_box['xmin'], ref_box['ymin'], ref_box['xmax'], ref_box['ymax']]
mapping[ref_name] = []
for pred_idx, pred_box in pred_boxes.iterrows():
pred_name = f'{pred_box["filename"]}_{pred_idx}'
if pred_name not in reverse_mapping.keys():
reverse_mapping[pred_name] = []
pred_bbox = [pred_box['xmin'], pred_box['ymin'], pred_box['xmax'], pred_box['ymax']]
conf = pred_box['confidence']
if pred_name not in all_confs.keys():
all_confs[pred_name] = conf
iou_score = iou_bboxs(ref_bbox, pred_bbox)
if iou_score >= epsilon:
mapping[ref_name].append((pred_name, iou_score, conf, iou_score))
reverse_mapping[pred_name].append(ref_name)
# Don't return anything, we update both mappings in place
def process_mappings(mapping, reverse_mapping, all_confs):
'''
Calcualte thresholds for FPs and FNs for the prec-recall curve.
A reference detection is a FN at a threshold higher than the confidence of its highest confidence match.
A detection is a FP at a threshold where it is no longer the highest-IoU detection for at least one reference box.
'''
FN_thresholds = []
for k in mapping.keys():
matches = mapping[k]
if len(matches) == 0:
FN_thresh = -1.0 # If there is no match, it's always a FN
else:
FN_thresh = np.max(
[match[2] for match in matches]) # As soon as the first match appears, it is no longer a FN
FN_thresholds.append(FN_thresh)
FN_thresholds.append(-1.0) # Add an extra threshold that will never be reached
FN_thresholds = np.array(FN_thresholds)
FN_thresholds = FN_thresholds[np.argsort(-FN_thresholds)]
FP_thresholds = []
for k in reverse_mapping.keys():
FP_thresh = all_confs[k] # If there's no match, it's always a FP
matches = reverse_mapping[k]
if len(matches) != 0:
for match in matches:
ref_matches = mapping[match]
ordering = list(np.argsort([-rm[1] for rm in ref_matches])) # Sort the matches by descending IoU
curr_elem = [rm[0] for rm in ref_matches].index(k)
rank = ordering.index(curr_elem) # Where is the current element in the ordering?
if rank == 0:
FP_thresh = -1.0 # If this is the best match for any ref box, then it's never a FP
break
else:
all_match_confs = [ref_matches[ordering[ridx]][2] for ridx in np.arange(rank - 1, -1,
-1)] # Find the confidences of all the matches with higher IoU
min_match_conf = np.min(all_match_confs)
if min_match_conf > all_confs[
k]: # There is a better match that appears before this one. For this ref box, it's a FP.
pass
else:
FP_thresh = min(FP_thresh,
min_match_conf) # This match is the first until another one appears later. What is the lowest confidence for which this is still not a FP?
FP_thresholds.append(FP_thresh)
FP_thresholds.append(-1.0) # Add an extra threshold that will never be reached
FP_thresholds = np.array(FP_thresholds)
FP_thresholds = FP_thresholds[np.argsort(-FP_thresholds)]
return FN_thresholds, FP_thresholds
def compute_avg_precision(project_code, folder_ref, folder_pred):
ref_files = sorted([f for f in os.listdir(folder_ref)])
pred_files = sorted([f for f in os.listdir(folder_pred)])
mapping, reverse_mapping = {}, {}
all_confs = {}
confidences = []
for ref_file_name, pred_file_name in zip(ref_files, pred_files):
pred_boxes = pd.read_csv(os.path.join(folder_pred, pred_file_name))
ref_boxes = pd.read_csv(os.path.join(folder_ref, ref_file_name))
for pred_idx, pred_box in pred_boxes.iterrows():
confidences.append(pred_box['confidence'])
map_ref_pred(ref_boxes, pred_boxes, mapping, reverse_mapping, all_confs, 0.5)
FN_thresholds, FP_thresholds = process_mappings(mapping, reverse_mapping, all_confs)
ref_num = len(mapping.keys())
confidences.append(-1.0) # Add an extra threshold that will never be reached
confidences = np.array(confidences)
confidences = confidences[np.argsort(-confidences)] # Sort the confidences in descending order
pred_thresholds = np.flip(np.unique(confidences[:-1]))
FP_num, TP_num, pred_num = 0, 0, 0
precisions, recalls = [1], [0]
for thresh in pred_thresholds:
while thresh <= confidences[pred_num]:
pred_num += 1
while thresh <= FP_thresholds[FP_num]:
FP_num += 1
while thresh <= FN_thresholds[TP_num]:
TP_num += 1
prec = (pred_num - FP_num) / pred_num
rec = TP_num / ref_num
precisions.append(prec)
recalls.append(rec)
precisions.extend([0, 0])
precisions = np.array(precisions)
recalls.extend([recalls[-1], 1.0])
recalls = np.array(recalls)
# AUC = np.sum((recalls[1:]-recalls[:-1])*precisions[1:])
interp_prec = np.flip(np.maximum.accumulate(np.flip(precisions))) # Use the interpolated prec-rec curve
interp_rec = recalls
AUC2 = np.sum((interp_rec[1:] - interp_rec[:-1]) * interp_prec[1:])
return AUC2
########### SEG ###################################################################
label_dict = {
'void': (0, 0, 0),
'flat': (128, 64, 128),
'construction': (70, 70, 70),
'object': (153, 153, 153),
'nature': (107, 142, 35),
'sky': (70, 130, 180),
'human': (220, 20, 60),
'vehicle': (0, 0, 142)
}
def labmask_to_onehot_pixel_counts(mask, label_dict):
# prepare empty list
onehot_labels = []
# class_pixel_counts = {label: 0 for label in label_dict}
# SOLUTION
# iterate over all classes defined in the label_dict
for key in label_dict:
rgb = label_dict[key]
# prepare empty binary mask
class_mask = np.zeros((mask.shape[:2]), dtype=bool)
# make binary mask of positions given by all rgb values
# corresponding to a specific class
label_pos = np.equal(mask, rgb)
# add label positions to binary mask
class_mask = np.logical_or(class_mask, np.all(label_pos, axis=-1))
# add binary mask of the respective class to the list
onehot_labels.append(class_mask)
# class_pixel_counts[key] = np.sum(class_mask)
# END OF SOLUTION
# return class_pixel_counts
return onehot_labels
def labmask_to_onehot_pixel_counts_alternative(mask, label_dict):
# prepare empty list
onehot_labels = []
# class_pixel_counts = {label: 0 for label in label_dict}
# SOLUTION
# iterate over all classes defined in the label_dict
for key in label_dict:
rgb = label_dict[key]
# prepare empty binary mask
# make binary mask of positions given by all rgb values
# corresponding to a specific class
label_pos = np.equal(mask, rgb)
# add label positions to binary mask
# add binary mask of the respective class to the list
onehot_labels.append(np.all(label_pos, axis=-1))
# class_pixel_counts[key] = np.sum(class_mask)
# END OF SOLUTION
# return class_pixel_counts
return onehot_labels
def multiply_by_weights(class_wise_scores):
# weights for the whole dataset (including the secret)
weights = [0.105, 0.387, 0.217, 0.018, 0.152, 0.035, 0.012, 0.073] # 8 classes
# multiply
result = [a * b for a, b in zip(class_wise_scores, weights)]
# calculate the mean
mean = sum(result)
return mean
def classwise_iou_mask_4_img_pair(img_ref, img_pre):
onehot_ref = labmask_to_onehot_pixel_counts(img_ref, label_dict)
onehot_pre = labmask_to_onehot_pixel_counts(img_pre, label_dict)
classwise_scores = []
for idx, class_key in enumerate(label_dict):
mask_ref = onehot_ref[idx]
mask_pre = onehot_pre[idx]
intersection = np.logical_and(mask_ref, mask_pre)
union = np.logical_or(mask_ref, mask_pre)
if np.sum(union) != 0:
iou = np.sum(intersection) / np.sum(union)
else:
iou = None
classwise_scores.append(iou)
return classwise_scores
def compute_avg_iou_mask(project_code, folder_ref, folder_pre):
# reading the images
ref_files = sorted([f for f in os.listdir(folder_ref)])
pre_files = sorted([f for f in os.listdir(folder_pre)])
score_global = [0., 0., 0., 0., 0., 0., 0., 0.]
n_class_img = [0, 0, 0, 0, 0, 0, 0, 0]
for ref_file, pre_file in zip(ref_files, pre_files):
ref_img = io.imread(os.path.join(folder_ref, ref_file))
pre_img = io.imread(os.path.join(folder_pre, pre_file))
score_class_wise_pair = classwise_iou_mask_4_img_pair(ref_img, pre_img)
score_global = [a + b if a is not None else b for a, b in zip(score_class_wise_pair, score_global)]
n_class_img = [b + 1 if a is not None else b for a, b in zip(score_class_wise_pair, n_class_img)]
score_global = [a / n_cl for a, n_cl in zip(score_global, n_class_img)]
print(f'class-wise scores = {score_global}')
final_score = multiply_by_weights(score_global)
return final_score
############ CLA ###################################################################
class_dict = {
'bus': 0,
'car': 1,
'light': 2,
'sign': 3,
'truck': 4,
'vegetation': 5
}
# classes = ('bus', 'car', 'light', 'sign', 'truck' , 'vegetation')
def f1_score_4_two_lists(class_list_true, class_list_pred):
score = f1_score(class_list_true, class_list_pred, average='micro')
return score
def get_csv_file_name(folder_path):
if os.path.exists(folder_path):
for filename in os.listdir(folder_path):
if filename.endswith('.csv'):
file_path = os.path.join(folder_path, filename)
return file_path
print(f'CSV file is not found in folder {folder_path}')
return -1
else:
print("Folder not found.")
return -1
def compute_f1score4_classes(project_code, path_ref, path_pre):
# reading the csvs
# format is the following ['filename', 'class_id']
df_ref = pd.read_csv(get_csv_file_name(path_ref))
df_pre = pd.read_csv(get_csv_file_name(path_pre))
# sort the dataframe by 'img_name'
df_ref.sort_values(by='filename', inplace=True)
df_pre.sort_values(by='filename', inplace=True)
# form a list consisting only of class_ids
reference_class_id_list = df_ref['class_id'].tolist()
predicted_class_id_list = df_pre['class_id'].tolist()
return f1_score_4_two_lists(reference_class_id_list, predicted_class_id_list)
########### COL, SUP #####################################################################
def dssim(img_ref, img_pred):
ssim_none = ssim(img_ref, img_pred, channel_axis=2, data_range=255)
dssim_score = 1 - ssim_none
return dssim_score
def psnr(img_ref, img_pred):
psnr_none = psnr(img_ref, img_pred)
return psnr_none
def compute_simple_score_images(project_code, folder_ref, folder_pre):
# reading the images
ref_files = sorted([f for f in os.listdir(folder_ref)])
pre_files = sorted([f for f in os.listdir(folder_pre)])
scores = []
for ref_file, pre_file in zip(ref_files, pre_files):
# Open images
ref_img = io.imread(os.path.join(folder_ref, ref_file))
pre_img = io.imread(os.path.join(folder_pre, pre_file))
if project_code == 'COL':
score_pair = dssim(ref_img, pre_img)
elif project_code == 'SUP':
score_pair = psnr(ref_img, pre_img)
# print(f'Img {ref_file}: score pair = {score_pair}')
scores.append(score_pair)
return sum(scores) / len(scores)
# #### code below should not be changed ############################################################################
def get_arguments():
if len(sys.argv) != 4:
print("Usage: python evaluation.py <project_code> <path_2_reference> <path_2_output_predictions>")
sys.exit(1)
try:
project_code = sys.argv[1]
path_2_reference = sys.argv[2]
path_2_output_predictions = sys.argv[3]
except Exception as e:
print(e)
sys.exit(1)
return project_code, path_2_reference, path_2_output_predictions
if __name__ == "__main__":
project_type, path_2_ground_truth, path_2_predictions = get_arguments()
if project_type == 'DET':
score = compute_avg_precision(project_type, path_2_ground_truth, path_2_predictions)
elif project_type == 'CLA':
score = compute_f1score4_classes(project_type, path_2_ground_truth, path_2_predictions)
elif project_type == 'SEG':
score = compute_avg_iou_mask(project_type, path_2_ground_truth, path_2_predictions)
elif project_type == 'COL' or project_type == 'SUP':
score = compute_simple_score_images(project_type, path_2_ground_truth, path_2_predictions)
print(f'Final score for {project_type} project: {score}')