-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqa_extract.py
179 lines (143 loc) · 6.15 KB
/
qa_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import json
import requests
import os
import re
import base64
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
def encode_image(image_path):
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode("utf-8")
def photo_description(message):
user_text = ""
file_path = "../source/" + message["photo"]
model = "gpt-4-vision-preview"
base64_image = encode_image(file_path)
logger.info(f"base64_image file_path: {file_path} len: {len(base64_image)}")
api_key = os.environ.get("OPENAI_API_KEY", "")
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
payload = {
"model": model,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Максимально детально опиши, что ты видишь на скриншоте экрана. При наличии конкретных показателей, как, например, заряд батареи, уровень сигнала и тому подобных, обязательно точно указывай их, если возможно, в числовых значениях. Если присутствует переписка, предоставляй её содержание полностью дословно.",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail": "high",
},
},
],
}
],
"max_tokens": 1500,
}
logger.info("Posting payload..")
try:
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=180,
)
except:
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=300,
)
if response.status_code == 200:
response_json = response.json()
description = response_json["choices"][0]["message"]["content"]
user_text += "\nОписание присланного скриншота: "
user_text += description
logger.info(f"Screenshot description:\n{description}")
else:
logger.error(f"Error fetching image description: {response.text}")
return user_text
def extract_text(message):
message_text = ""
if "photo" in message:
message_text += photo_description(message)
if message["text"] != "":
message_text += f'\nКомментарий к скриншоту: {message["text"]}'
elif isinstance(message["text"], str) and message["from"] != "mrmbot":
message_text += message["text"]
elif isinstance(message["text"], list) and (
message["from"] != "mrmbot"
or (message["from"] == "mrmbot" and "result" in message["text"][0])
):
full_text = []
if message["from"] == "mrmbot":
full_text.append("\nТехническая информация о пользователе: ")
pattern = r"\n},"
for text_component in message["text"]:
if (
isinstance(text_component, dict)
and "text" in text_component
and text_component["type"] != "link"
):
full_text.append(text_component["text"])
elif isinstance(text_component, str):
parts = re.split(pattern, text_component, maxsplit=1)
cleaned_text = parts[0]
if cleaned_text:
full_text.append(cleaned_text)
message_text += " ".join(full_text)
return message_text
def main():
file_path = "../source/result.json"
with open(file_path, "r", encoding="utf-8") as file:
data = json.load(file)
questions = {}
answers = {}
for message in data["messages"]:
if message["type"] == "message":
message_text = extract_text(message)
if message_text == "":
continue
if "forwarded_from" in message:
question_id = message["id"]
questions[question_id] = message_text
elif "reply_to_message_id" in message:
reply_id = message["reply_to_message_id"]
if reply_id in answers:
if (
not "Текст: " in answers[reply_id]
and not "Описание присланного скриншота: " in message_text
):
answers[reply_id] += f" \nТекст: {message_text}"
else:
answers[reply_id] += " " + message_text
elif (
"Комментарий к скриншоту: " in message_text
or "Описание присланного скриншота: " in message_text
or "Техническая информация о пользователе: " in message_text
):
answers[reply_id] = message_text
else:
answers[reply_id] = f"\nТекст: {message_text}"
qa_pairs = []
for q_id, question_text in questions.items():
if question_text == "":
continue
answer = answers.get(q_id, "No answer found")
qa_pairs.append({f"Question {q_id}": question_text, f"Answer {q_id}": answer})
with open("data/qa.json", "w", encoding="utf-8") as file:
json.dump(qa_pairs, file, ensure_ascii=False, indent=4)
print("Extracted", len(qa_pairs), "question-answer pairs.")
return qa_pairs
if __name__ == "__main__":
main()