diff --git a/docs/source/demo.ipynb b/docs/source/demo.ipynb index 8a8e0d8..dc360fe 100644 --- a/docs/source/demo.ipynb +++ b/docs/source/demo.ipynb @@ -1,5 +1,12 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Library Examples - ChainoPy Vs. PyDTMC" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -18,7 +25,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Initialize a Dummy TPM for Chainopy Implementation and PyDTMC" + "### Initialization " ] }, { @@ -133,7 +140,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Now let's compare the Runtime" + "### Runtime Comparision" ] }, { @@ -196,14 +203,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### ChainoPy is approx 5x Faster than PyDTMC" + "#### ChainoPy is approx 5x Faster than PyDTMC" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Now let's run a simulation using my implementation" + "### Simulation" ] }, { @@ -292,7 +299,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also use my Implementation to calculate distribution of the chain after `n` steps" + "### N-Step Distribution" ] }, { @@ -321,7 +328,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also save the Model as a JSON file " + "### Model Saving" ] }, { @@ -337,7 +344,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### If the matrix is TPM is sparse, with 40% or more elements equal/less than 0.0001, it will save the matrix in sparse format" + "### Sparisty & Model Saving" ] }, { @@ -396,7 +403,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also load the saved models as a new MarkovChain Object" + "### Load Saved Models" ] }, { @@ -464,7 +471,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also load a model containing TPM as a Sparse COO Matrix" + "### Load Sparse Models" ] }, { @@ -532,7 +539,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Now we'll look at \"How you can transform a Markov Chain to an equivalent Neural Network using ChainoPy's MarkovChainNeuralNetwork Class " + "### Transform a Markov Chain to a Neural Network " ] }, { @@ -4685,14 +4692,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### NOTE: A better Accuracy can be achieved using Complex Hyperparameter - Search Methods" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Now let's see How can we use this library for Stock Predictions using Markov Switching Models" + "### Stock Predictions using Markov Switching Models" ] }, { @@ -4906,13 +4906,6 @@ "ax.set_title(\"Data and Prediction\")\n", "ax.legend()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/docs/source/index.rst b/docs/source/index.rst index 295bbf9..138a5d6 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -6,15 +6,6 @@ Welcome to Chainopy's documentation! _autosummary -Examples --------- - -.. toctree:: - :maxdepth: 2 - :caption: Notebooks - - examples/demo.ipynb - Autosummary ----------- @@ -25,6 +16,15 @@ Autosummary chainopy.markov_switching chainopy.nn +Examples +-------- + +.. toctree:: + :maxdepth: 2 + :caption: Notebooks + + demo.ipynb + Readme ------ diff --git a/examples/demo.ipynb b/examples/demo.ipynb index 8a8e0d8..dc360fe 100644 --- a/examples/demo.ipynb +++ b/examples/demo.ipynb @@ -1,5 +1,12 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Library Examples - ChainoPy Vs. PyDTMC" + ] + }, { "cell_type": "code", "execution_count": 1, @@ -18,7 +25,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Initialize a Dummy TPM for Chainopy Implementation and PyDTMC" + "### Initialization " ] }, { @@ -133,7 +140,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Now let's compare the Runtime" + "### Runtime Comparision" ] }, { @@ -196,14 +203,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### ChainoPy is approx 5x Faster than PyDTMC" + "#### ChainoPy is approx 5x Faster than PyDTMC" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "#### Now let's run a simulation using my implementation" + "### Simulation" ] }, { @@ -292,7 +299,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also use my Implementation to calculate distribution of the chain after `n` steps" + "### N-Step Distribution" ] }, { @@ -321,7 +328,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also save the Model as a JSON file " + "### Model Saving" ] }, { @@ -337,7 +344,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### If the matrix is TPM is sparse, with 40% or more elements equal/less than 0.0001, it will save the matrix in sparse format" + "### Sparisty & Model Saving" ] }, { @@ -396,7 +403,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also load the saved models as a new MarkovChain Object" + "### Load Saved Models" ] }, { @@ -464,7 +471,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### You can also load a model containing TPM as a Sparse COO Matrix" + "### Load Sparse Models" ] }, { @@ -532,7 +539,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Now we'll look at \"How you can transform a Markov Chain to an equivalent Neural Network using ChainoPy's MarkovChainNeuralNetwork Class " + "### Transform a Markov Chain to a Neural Network " ] }, { @@ -4685,14 +4692,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### NOTE: A better Accuracy can be achieved using Complex Hyperparameter - Search Methods" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Now let's see How can we use this library for Stock Predictions using Markov Switching Models" + "### Stock Predictions using Markov Switching Models" ] }, { @@ -4906,13 +4906,6 @@ "ax.set_title(\"Data and Prediction\")\n", "ax.legend()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": {