-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
372 lines (305 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from __future__ import print_function
from __future__ import division
import collections
import os
import matplotlib
import numpy as np
import logging
import torch
import time
import json
import random
import shelve
from tqdm import tqdm
import lib
from lib.clustering import make_clustered_dataloaders
import warnings
warnings.simplefilter("ignore", category=PendingDeprecationWarning)
os.putenv("OMP_NUM_THREADS", "8")
def load_config(config_name):
with open(config_name, 'r') as f:
config = json.load(f)
# config = json.load(open(config_name))
def eval_json(config):
for k in config:
if type(config[k]) != dict:
if type(config[k]) is str:
# if python types, then evaluate str expressions
if config[k][:5] in ['range', 'float']:
config[k] = eval(config[k])
else:
eval_json(config[k])
eval_json(config)
return config
def json_dumps(**kwargs):
# __repr__ may contain `\n`, json replaces it by `\\n` + indent
return json.dumps(**kwargs).replace('\\n', '\n ')
class JSONEncoder(json.JSONEncoder):
def default(self, x):
# add encoding for other types if necessary
if isinstance(x, range):
return 'range({}, {})'.format(x.start, x.stop)
if not isinstance(x, (int, str, list, float, bool)):
return repr(x)
return json.JSONEncoder.default(self, x)
def evaluate(model, dataloaders, logging, backend='faiss', config=None):
score = lib.utils.evaluate(
model,
dataloaders['eval'],
use_penultimate=False,
backend=backend
)
return score
def train_batch(model, criterion, opt, config, batch, dset, epoch):
X = batch[0].cuda(non_blocking=True) # images
T = batch[1].cuda(non_blocking=True) # class labels
I = batch[2] # image ids
opt.zero_grad()
M = model(X)
if epoch >= config['finetune_epoch']:
pass
else:
# Dynamic learner or baseline method
if config['dyn_learner'] == True:
split_array = [len(i) for i in model.learner_neurons]
M = M.split(split_array, dim=1)
else:
# Baseline (DCML) method
M = M.split(config['sz_embedding'] // config['nb_clusters'], dim=1)
M = M[dset.id]
M = torch.nn.functional.normalize(M, p=2, dim=1)
loss = criterion[dset.id](M, T)
loss.backward()
opt.step()
return loss.item()
def get_criterion(config):
name = 'margin'
ds_name = config['dataset_selected']
nb_classes = len(
config['dataset'][ds_name]['classes']['train']
)
logging.debug('Create margin loss. #classes={}'.format(nb_classes))
criterion = [
lib.loss.MarginLoss(
nb_classes,
).cuda() for i in range(config['nb_clusters'])
]
return criterion
def get_optimizer(config, model, criterion):
opt = torch.optim.Adam([
{
'params': model.parameters_dict['backbone'],
**config['opt']['backbone']
},
{
'params': model.parameters_dict['embedding'],
**config['opt']['embedding']
}
])
return opt
def start(config):
metrics = {}
# reserve GPU memory for faiss if faiss-gpu used
faiss_reserver = lib.faissext.MemoryReserver()
# create logging directory
os.makedirs(config['log']['path'], exist_ok=True)
# warn if log file exists already and append underscore
import warnings
_fpath = os.path.join(config['log']['path'], config['log']['name'])
if os.path.exists(_fpath):
warnings.warn('Log file exists already: {}'.format(_fpath))
print('Appending underscore to log file and database')
config['log']['name'] += '_'
# initialize logger
logging.basicConfig(
format="%(asctime)s %(message)s",
level=logging.DEBUG if config['verbose'] else logging.INFO,
handlers=[
logging.FileHandler(
"{0}/{1}.log".format(
config['log']['path'],
config['log']['name']
)
),
logging.StreamHandler()
]
)
# print summary of config
logging.info(
json_dumps(obj=config, indent=4, cls=JSONEncoder, sort_keys=True)
)
torch.cuda.set_device(config['cuda_device'])
if not os.path.isdir(config['log']['path']):
os.mkdir(config['log']['path'])
# set random seed for all gpus
seed = config['random_seed']
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
faiss_reserver.lock(config['backend'])
model = lib.model.make(config).cuda()
start_epoch = 0
best_epoch = -1
best_recall = 0
best_nmi = 0
explore_dK = True
# create init and eval dataloaders; init used for creating clustered DLs
dataloaders = {}
for dl_type in ['init', 'eval']:
dataloaders[dl_type] = lib.data.loader.make(config, model, dl_type)
criterion = get_criterion(config)
opt = get_optimizer(config, model, criterion)
faiss_reserver.release()
logging.info("Evaluating initial model...")
metrics[-1] = {
'score': evaluate(model, dataloaders, logging,
backend=config['backend'],
config=config)}
dataloaders['train'], C, T, I = make_clustered_dataloaders(model,
dataloaders['init'], config, reassign=False,
logging=logging)
faiss_reserver.lock(config['backend'])
metrics[-1].update({'C': C, 'T': T, 'I': I})
logging.info("Training for {} epochs.".format(config['nb_epochs']))
losses = []
t1 = time.time()
for e in range(start_epoch, config['nb_epochs']):
is_best = False
metrics[e] = {}
time_per_epoch_1 = time.time()
losses_per_epoch = []
if e >= config['finetune_epoch']:
if e == config['finetune_epoch'] or e == start_epoch:
logging.info('Starting to finetune model...')
config['nb_clusters'] = 1
logging.debug(
"config['nb_clusters']: {})".format(config['nb_clusters']))
faiss_reserver.release()
dataloaders['train'], C, T, I = make_clustered_dataloaders(
model, dataloaders['init'], config, logging=logging)
assert len(dataloaders['train']) == 1
elif e > 0 and config['recluster']['enabled'] and \
config['nb_clusters'] > 0:
if e % config['recluster']['mod_epoch'] == 0:
logging.info("Reclustering dataloaders...")
faiss_reserver.release()
dataloaders['train'], C, T, I = make_clustered_dataloaders(
model, dataloaders['init'], config, reassign=True,
C_prev=C, I_prev=I, logging=logging)
faiss_reserver.lock(config['backend'])
if config['verbose']:
for c in range(config['nb_clusters']):
print(
np.bincount(
np.array(
dataloaders['train'][c].dataset.ys)
)[:200]
)
metrics[e].update({'C': C, 'T': T, 'I': I})
# merge dataloaders (created from clusters) into one dataloader
mdl = lib.data.loader.merge(dataloaders['train'])
# calculate number of batches for tqdm
max_len_dataloaders = max([len(dl) for dl in dataloaders['train']])
num_batches_approx = max_len_dataloaders * len(dataloaders['train'])
if config['dyn_learner'] == True:
model.filter_learner.reset(config['sz_embedding'])
for batch, dset in tqdm(
mdl,
total=num_batches_approx,
disable=num_batches_approx < 100,
desc='Train epoch {}.'.format(e)
):
# for batch, dset in tqdm(mdl, disable=True, desc='Train epoch {}.'.format(e)):
loss = train_batch(model, criterion, opt, config, batch, dset, e)
losses_per_epoch.append(loss)
time_per_epoch_2 = time.time()
losses.append(np.mean(losses_per_epoch[-20:]))
logging.info(
"Epoch: {}, loss: {}, time (seconds): {:.2f}.".format(
e,
losses[-1],
time_per_epoch_2 - time_per_epoch_1
)
)
faiss_reserver.release()
tic = time.time()
metrics[e].update({
'score': evaluate(model, dataloaders, logging,
backend=config['backend'],
config=config),
'loss': {
'train': losses[-1]
}
})
logging.debug(
'Evaluation total elapsed time: {:.2f} s'.format(
time.time() - tic
)
)
faiss_reserver.lock(config['backend'])
# recall_curr = metrics[e]['score']['recall'][0] # take R@1
nmi_curr = metrics[e]['score']['nmi'] # take R@1
if nmi_curr > best_nmi:
best_nmi = nmi_curr
best_epoch = e
is_best = True
explore_dK = True
logging.info('Best epoch!')
model.current_epoch = e
# save metrics etc. to shelve file
with shelve.open(
os.path.join(
config['log']['path'], config['log']['name']),
writeback=True
) as _f:
if 'config' not in _f:
_f['config'] = config
if 'metrics' not in _f:
_f['metrics'] = {}
# if initial model evaluated, append metrics
if -1 in metrics:
_f['metrics'][-1] = metrics[-1]
_f['metrics'][e] = metrics[e]
if config['save_model'] and is_best:
save_suff = '_' + str(e) + '.pt'
torch.save(
model.state_dict(),
os.path.join(
config['log']['path'], config['log']['name'] + save_suff
)
)
logging.info('Save the checkpoint!')
# Dynamic learner (best epoch strategie)
if config['dyn_learner'] == True and e > 0 and (e >= (best_epoch + 10)) and explore_dK and e < config['finetune_epoch']:
logging.info("Epoch: {}, nb_learners: {}. Exploring new learner........!!!".format(e, config['nb_clusters']))
if model.filter_learner.grad_index == 0:
logging.info("No grad_index to compute score!!!")
elif len(model.learner_neurons[-1]) > 10:
# model.filter_learner.compute_rank()
new_learner_neurons = model.filter_learner.split_learner(model.learner_neurons[-1])
if len(new_learner_neurons) >= 5:
# split the neurons
logging.info("Split the neurons to new learner of length {}".format(len(new_learner_neurons)))
new_learner_indices, reset_indices, nb_learners = lib.model.split_neurons(model.embedding, new_learner_neurons, model.learner_neurons[-1], config['nb_clusters'], config['sz_embedding'])
# update the model.learner_neurons
model.learner_neurons[-1] = new_learner_indices
model.learner_neurons.append(reset_indices)
logging.info("Epoch {}: {} learner and subspace index are {}".format(e, nb_learners, model.learner_neurons))
if nb_learners > 1:
config['recluster']['enabled'] = True
config['nb_clusters'] = nb_learners
# assign new criteria and optimizer
criterion = get_criterion(config)
explore_dK = False
else:
logging.info("**** Not enough neurons for learner (new_learner_neurons {})".format(len(new_learner_neurons)))
else:
logging.info("!!!!! Not enough neurons to explore subspace")
t2 = time.time()
logging.info(
"Total training time (minutes): {:.2f}.".format(
(t2 - t1) / 60
)
)
logging.info("Best nmi = {} at epoch {}.".format(best_nmi, best_epoch))