-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_face_dataset.py
57 lines (42 loc) · 1.72 KB
/
01_face_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import os
from picamera.array import PiRGBArray
from picamera import PiCamera
# cam = cv2.VideoCapture(0)
# cam.set(3, 640) # set video width
# cam.set(4, 480) # set video height
# Setup the camera
camera = PiCamera()
camera.resolution = ( 640, 480 )
camera.framerate = 2#帧速率
#每秒显示帧数(Frames per Second,简称:FPS)
rawCapture = PiRGBArray( camera, size=( 640, 480 ) )
face_detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# For each person, enter one numeric face id
face_id = input('\n Input user id end press <enter> ==> ')
print("\n [INFO] Initializing face capture. Look the camera and wait ...")
# Initialize individual sampling face count
count = 0
# while(True):
for frame in camera.capture_continuous( rawCapture, format="bgr", use_video_port=True ):
img = frame.array
# img = cv2.flip(img, -1) # flip video image vertically
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_detector.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 2)
count += 1
# Save the captured image into the datasets folder
cv2.imwrite("dataset/User." + str(face_id) + '.' + str(count) + ".jpg", gray[y:y+h,x:x+w])
cv2.imshow('image', img)
k = cv2.waitKey(100) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
elif count >= 30: # Take 30 face sample and stop video
break
# Clear the stream in preparation for the next frame
rawCapture.truncate( 0 )
# Do a bit of cleanup
print("\n [INFO] Successfully stored user information with id {}".format(face_id))
print("\n [INFO] Exiting Program and cleanup stuff")
cv2.destroyAllWindows()