forked from johnsalmon/cpp-counter-based-engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphiloxexample.cpp
110 lines (97 loc) · 4.1 KB
/
philoxexample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#include "counter_based_engine.hpp"
#include "philox_prf.hpp"
#include <cinttypes>
#include <iostream>
#include <vector>
#include <cassert>
// Save some typing:
using namespace std;
using eng_t = philox4x64;
using prf_t = eng_t::prf_type; // i.e., philox4x64_prf;
// make it easy to print results:
template<typename T, size_t N>
std::ostream& operator<<(std::ostream& os, array<T, N>& result){
for(auto& r : result)
os << r << " ";
return os;
}
int main(int argc, char **argv){
using ranges::subrange;
eng_t eng1; // default constructor of engine
eng_t eng2(12345); // result_type constructor
seed_seq ss{1, 2, 3, 4, 5};
eng_t eng3(ss); // seed sequence constructor
cout << "iter eng1() eng2() eng3()\n";
for(unsigned i=0; i<10; ++i){
cout << i << " " << eng1() << " " << eng2() << " " << eng3() << "\n";
}
cout << "After 10 iterations, the three different engines are:\n";
cout << "eng1: " << eng1 << "\n";
cout << "eng2: " << eng2 << "\n";
cout << "eng3: " << eng3 << "\n";
// reseed eng1 with a result_type and then discard so it matches eng2
eng1.seed(12345);
eng1.discard(10);
assert(eng1 == eng2);
for(unsigned i=0; i<10; ++i)
assert(eng1() == eng2());
// reseed eng1 with a seedseq and then discard so it matches eng3
eng1.seed(ss);
eng1.discard(2); eng1.discard(8);
assert(eng1 == eng3);
for(unsigned i=0; i<10; ++i)
assert(eng1() == eng3());
cout << "Extract the prf from eng3.\n";
using prf_t = decltype(eng3)::prf_type;
prf_t prf1;
cout << "Call it directly on {0, 0, 0, 0, 0, i}:\n";
array<uint64_t, 6> in{}; // in full generality, array<prf_t::input_value_type, prf_t::input_count>
array<uint64_t, 4> result;
for(unsigned i=0; i<10; ++i){
prf1(begin(in), begin(result));
in[5]++;
cout << i << ": " << result << "\n";
}
// Check that the examples in README.md actually work...
{
using prf_t = philox4x64_prf;
static const size_t Nin = 3;
array<prf_t::input_value_type, prf_t::input_count> in[Nin] = {{1,2,3,4,5,6}, {7,8, 9,10,11,12}, {13,14,15,16,17,18}};
uint64_t out[Nin*prf_t::output_count]; // 12 values
prf_t{}.generate(in | views::transform([](auto& a){return begin(a);}), begin(out));
cout << "Random values obtained directly from philox4x64_prf: ";
for(const auto o : out)
cout << o << " ";
cout << "\n";
uint64_t a = 1, b = 2, c = 3, d=4, e=5;
auto eng = counter_based_engine<prf_t, 1>({a, b, c, d, e}); // 2^320 distinct engines, each with period 2^66
eng(); eng();
}
// Suppose we had a monte carlo simulation that required three normally
// distributed values for each of a large number of "atoms" at each of
// a large number of timesteps.
const int Ntimesteps = 2; // can be as large as 2^32
const int Natoms = 3; // can be as large as 2^32
cout << "Generating normal random values from program state rather than sequentially:\n";
cout << "t aid n1 n2 n3\n";
uint32_t global_seed = 999;
for(uint32_t timestep = 0; timestep < Ntimesteps; ++timestep){
for(uint32_t atomid = 0; atomid < Natoms; ++atomid){
// A single prf can be shared by many threads. "Time"
// may run forwards or backwards. Atoms may be "visited"
// in any order and may be "visited" more than once per
// timestep, etc. In short, the statelessness of the
// keyed_prf generator allows the overall algorithm
// freedom that is not available when using a conventional
// Random Number Generator.
counter_based_engine<philox4x32_prf, 1> eng{{global_seed, timestep, atomid}};
normal_distribution nd;
auto n1 = nd(eng);
auto n2 = nd(eng);
auto n3 = nd(eng);
// Do something interesting with n1, n2, n3...
cout << timestep << " " << atomid << " " << n1 << " " << n2 << " " << n3 << "\n";
}
}
return 0;
}