diff --git a/examples/clustering/sklearn_clustering_with_aeon_distances.ipynb b/examples/clustering/sklearn_clustering_with_aeon_distances.ipynb index 412ec83d5e..256aab95bb 100644 --- a/examples/clustering/sklearn_clustering_with_aeon_distances.ipynb +++ b/examples/clustering/sklearn_clustering_with_aeon_distances.ipynb @@ -125,7 +125,6 @@ "# Visualize the clustering results\n", "plt.figure(figsize=(10, 6))\n", "for label in np.unique(labels):\n", -<<<<<<< HEAD " cluster_data = X[labels == label] # Ensure correct slicing\n", " plt.plot(np.mean(cluster_data, axis=0), label=f\"Cluster {label}\", linewidth=2)\n", "\n", @@ -134,15 +133,13 @@ "plt.ylabel(\"Mean Value\")\n", "plt.legend(loc=\"upper right\", fontsize=\"small\", ncol=2)\n", "plt.grid(True)\n", - "plt.show()\n" -======= + "plt.show()\n", " plt.plot(\n", " np.mean(X[labels == label], axis=0), label=f\"Cluster {label}\"\n", " ) # Fix indexing\n", "plt.title(\"Hierarchical Clustering with DTW Distance\")\n", "plt.legend()\n", "plt.show()" ->>>>>>> fb45d2921c7f2c8ca58b871275140d14e02c6956 ] }, {