diff --git a/aeon/clustering/feature_based/_r_cluster.py b/aeon/clustering/feature_based/_r_cluster.py index 516ad1c7c6..cd1ec629e9 100644 --- a/aeon/clustering/feature_based/_r_cluster.py +++ b/aeon/clustering/feature_based/_r_cluster.py @@ -411,7 +411,6 @@ def _fit(self, X, y=None): parameters = self._get_parameterised_data(X) transformed_data = self._get_transformed_data(X=X, parameters=parameters) - self.scaler = StandardScaler() X_std = self.scaler.fit_transform(transformed_data) @@ -421,7 +420,7 @@ def _fit(self, X, y=None): self.optimal_dimensions = max( 1, min(optimal_dimensions, X_std.shape[0], X_std.shape[1]) ) - + self.x_test = X pca = PCA(n_components=optimal_dimensions, random_state=self.random_state) transformed_data_pca = pca.fit_transform(X_std) self.estimator = KMeans( @@ -436,12 +435,11 @@ def _predict(self, X, y=None) -> np.ndarray: parameters = self._get_parameterised_data(X) transformed_data = self._get_transformed_data(X=X, parameters=parameters) - X_std = self.scaler.fit_transform(transformed_data) if self.optimal_dimensions > max(1, min(X_std.shape[0], X_std.shape[1])): raise ValueError( - f"optimal dimensions={self.optimal_dimensions} must be between 0 and " - f"min(n_samples, n_features)={min(X_std.shape[0], X_std.shape[1])}" + f"fitted x={self.x_test} must be between 0 and " + f"sample x ={X}" ) pca = PCA(n_components=self.optimal_dimensions, random_state=self.random_state) transformed_data_pca = pca.fit_transform(X_std)