-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
47 lines (39 loc) · 1.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from fastapi import FastAPI, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import numpy as np
from io import BytesIO
from PIL import Image
import tensorflow as tf
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
MODEL = tf.keras.models.load_model("main")
CLASS_NAMES = ["glioma", "meningioma", "notumor", "pituitary"]
@app.get("/ping")
async def ping():
return "Hello, I am alive"
def read_file_as_image(data) -> np.ndarray:
image = np.array(Image.open(BytesIO(data)))
return image
@app.post("/predict")
async def predict(
file: UploadFile = File(...)
):
image = read_file_as_image(await file.read())
img_batch = np.expand_dims(image, 0)
predictions = MODEL.predict(img_batch)[0]
predicted_class = CLASS_NAMES[np.argmax(predictions)]
confidence = np.max(predictions)
return {
'class': predicted_class,
'confidence': float(confidence)
}
if __name__ == "__main__":
uvicorn.run(app)