-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbench.py
444 lines (348 loc) · 14.9 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import sys
import time
import numpy as np
import torch
import torch.profiler
from torch.profiler import ProfilerActivity
import load_cpp_extension
import reduce_python
def bench(function, input, input_keys, dim, n_iters=10):
start = time.time()
for _ in range(n_iters):
function(input, input_keys, dim)
if torch.cuda.is_available():
torch.cuda.synchronize()
elapsed = time.time() - start
direct = elapsed / n_iters
elapsed = 0
for _ in range(n_iters):
values, _, _ = function(input, input_keys, dim)
summed = values[0].sum()
start = time.time()
summed.backward()
torch.cuda.synchronize()
elapsed += time.time() - start
backward = elapsed / n_iters
return direct, backward
def extract_from_equistore(block):
samples = torch.from_numpy(block.samples.copy().view(dtype=np.int32))
samples = samples.reshape(block.samples.shape[0], -1)
if "positions" in block.gradients_list():
positions_grad = block.gradient("positions")
positions_grad_samples = torch.from_numpy(
positions_grad.samples.copy().view(dtype=np.int32)
)
positions_grad_samples = positions_grad_samples.reshape(
positions_grad.samples.shape[0], -1
)
positions_grad = positions_grad.data
else:
positions_grad = None
positions_grad_samples = None
if "cell" in block.gradients_list():
cell_grad = block.gradient("cell")
cell_grad_samples = torch.from_numpy(
cell_grad.samples.copy().view(dtype=np.int32)
)
cell_grad_samples = cell_grad_samples.reshape(cell_grad.samples.shape[0], -1)
cell_grad = cell_grad.data
else:
cell_grad = None
cell_grad_samples = None
values = (block.values, samples)
positions_grad = (positions_grad, positions_grad_samples)
cell_grad = (cell_grad, cell_grad_samples)
return values, positions_grad, cell_grad
def descriptor_to_cuda(descriptor):
from equistore import TensorBlock, TensorMap
blocks = []
for _, block in descriptor:
new_block = TensorBlock(
values=block.values.detach().cuda().requires_grad_(True),
samples=block.samples,
components=block.components,
properties=block.properties,
)
for parameter in block.gradients_list():
gradient = block.gradient(parameter)
new_block.add_gradient(
parameter,
data=gradient.data.detach().cuda().requires_grad_(True),
samples=gradient.samples,
components=gradient.components,
)
blocks.append(new_block)
return TensorMap(descriptor.keys, blocks)
def descriptor_sizes(descriptor):
sizeof_double = 8
values_size = 0.0
position_gradient_size = 0.0
cell_gradient_size = 0.0
for _, block in descriptor:
values_size += len(block.values) * sizeof_double
if "positions" in block.gradients_list():
position_gradient_size += (
len(block.gradient("positions").data) * sizeof_double
)
if "cell" in block.gradients_list():
position_gradient_size += len(block.gradient("cell").data) * sizeof_double
return values_size, position_gradient_size, cell_gradient_size
def reduced_sizes(descriptor):
sizeof_double = 8
values_size = 0.0
position_gradient_size = 0.0
cell_gradient_size = 0.0
for _, block in descriptor:
values, positions_grad, cell_grad = extract_from_equistore(block)
values, positions_grad, cell_grad = reduce_python.reduce(
*values, 0, *positions_grad, *cell_grad
)
values_size += len(values[0]) * sizeof_double
if positions_grad[0] is not None:
position_gradient_size += len(positions_grad[0]) * sizeof_double
if cell_grad[0] is not None:
cell_gradient_size += len(cell_grad[0]) * sizeof_double
return values_size, position_gradient_size, cell_gradient_size
def bench_descriptor(function, descriptor, n_iters=10):
start = time.time()
for _ in range(n_iters):
for _, block in descriptor:
values, positions_grad, cell_grad = extract_from_equistore(block)
function(*values, 0, *positions_grad, *cell_grad)
if torch.cuda.is_available():
torch.cuda.synchronize()
elapsed = time.time() - start
direct = elapsed / n_iters
elapsed_values = 0
elapsed_grad = 0
for _ in range(n_iters):
zero_grad_descriptor(descriptor)
for _, block in descriptor:
values, positions_grad, cell_grad = extract_from_equistore(block)
values, positions_grad, cell_grad = function(
*values, 0, *positions_grad, *cell_grad
)
summed = values[0].sum()
start = time.time()
summed.backward()
if torch.cuda.is_available():
torch.cuda.synchronize()
elapsed_values += time.time() - start
if positions_grad[0] is not None:
summed = positions_grad[0].sum() + cell_grad[0].sum()
start = time.time()
summed.backward()
if torch.cuda.is_available():
torch.cuda.synchronize()
elapsed_grad += time.time() - start
backward_values = elapsed_values / n_iters
backward_grad = elapsed_grad / n_iters
return direct, backward_values, backward_grad
def create_real_data(file, subset, gradients):
try:
import ase.io
import rascaline
from equistore import TensorBlock, TensorMap
except ImportError:
print("rascaline not found, exiting")
sys.exit(0)
HYPERS = {
"cutoff": 1.5,
"max_radial": 20,
"max_angular": 15,
"atomic_gaussian_width": 0.3,
"center_atom_weight": 1.0,
"radial_basis": {"Gto": {}},
"cutoff_function": {"ShiftedCosine": {"width": 0.2}},
}
calculator = rascaline.SoapPowerSpectrum(**HYPERS)
frames = ase.io.read(file, subset)
if gradients:
descriptor = calculator.compute(frames, gradients=["positions", "cell"])
else:
descriptor = calculator.compute(frames)
# XXX: remove
descriptor.keys_to_samples("species_center")
descriptor.keys_to_properties(["species_neighbor_1", "species_neighbor_2"])
blocks = []
for _, block in descriptor:
new_block = TensorBlock(
values=torch.tensor(block.values, requires_grad=True),
samples=block.samples,
components=block.components,
properties=block.properties,
)
for parameter in block.gradients_list():
gradient = block.gradient(parameter)
new_block.add_gradient(
parameter,
data=torch.tensor(gradient.data, requires_grad=True),
samples=gradient.samples,
components=gradient.components,
)
blocks.append(new_block)
return TensorMap(descriptor.keys, blocks)
def zero_grad_descriptor(descriptor):
for _, block in descriptor:
block.values.grad = None
for parameter in block.gradients_list():
gradient = block.gradient(parameter)
gradient.data.grad = None
def format_throughput(value):
value /= 1024
if value > 1024 * 1024:
return f"{value/(1024 * 1024):.4} GiB/s"
elif value > 1024:
return f"{value/1024:.4} MiB/s"
else:
return f"{value:.4} KiB/s"
def bench_random():
print("RANDOM DATA")
torch.manual_seed(0xDEADBEEF)
n_samples = 10000
n_features = 1000
X = torch.rand((n_samples, 7, n_features), requires_grad=True, dtype=torch.float64)
X_keys = torch.randint(4, (n_samples, 3), dtype=torch.int32)
print("implementation | forward pass | backward pass")
forward, backward = bench(reduce_python.reduce, X, X_keys, 0)
print(f"python function = {1e3 * forward:.3} ms - {1e3 * backward:.5} ms")
forward, backward = bench(reduce_python.reduce_custom_autograd, X, X_keys, 0)
print(f"python autograd = {1e3 * forward:.3} ms - {1e3 * backward:.5} ms")
forward, backward = bench(torch.ops.reduce_cpp.reduce, X, X_keys, 0)
print(f"C++ function = {1e3 * forward:.3} ms - {1e3 * backward:.5} ms")
forward, backward = bench(torch.ops.reduce_cpp.reduce_custom_autograd, X, X_keys, 0)
print(f"C++ autograd = {1e3 * forward:.3} ms - {1e3 * backward:.5} ms")
if torch.cuda.is_available():
X = X.to(device="cuda")
X_keys = X_keys.to(device="cuda")
forward, backward = bench(
torch.ops.reduce_cpp.reduce,
X,
X_keys,
0,
)
print(
f"CUDA function (Cxx)= {1e3 * forward:.3} ms - {1e3 * backward:.5} ms" # noqa
)
forward, backward = bench(
torch.ops.reduce_cpp.reduce_custom_autograd,
X,
X_keys,
0,
)
print(
f"CUDA autograd = {1e3 * forward:.3} ms - {1e3 * backward:.5} ms" # noqa
)
def bench_real_data():
print("REAL DATA -- no forward gradients")
descriptor = create_real_data("random-methane-10k.extxyz", ":300", gradients=False)
print("implementation | forward pass | backward pass")
forward, backward_v, _ = bench_descriptor(reduce_python.reduce, descriptor)
print(f"python function = {1e3 * forward:.5} ms - {1e3 * backward_v:.5} ms")
forward, backward_v, _ = bench_descriptor(
reduce_python.reduce_custom_autograd, descriptor
)
print(f"python autograd = {1e3 * forward:.5} ms - {1e3 * backward_v:.5} ms")
forward, backward_v, _ = bench_descriptor(torch.ops.reduce_cpp.reduce, descriptor)
print(f"c++ function = {1e3 * forward:.5} ms - {1e3 * backward_v:.5} ms")
forward, backward_v, _ = bench_descriptor(
torch.ops.reduce_cpp.reduce_custom_autograd, descriptor
)
print(f"c++ autograd = {1e3 * forward:.5} ms - {1e3 * backward_v:.5} ms")
if torch.cuda.is_available():
values_size, _, _ = descriptor_sizes(descriptor)
reduced_values_size, _, _ = reduced_sizes(descriptor)
descriptor = descriptor_to_cuda(descriptor)
forward, backward_v, _ = bench_descriptor(
torch.ops.reduce_cpp.reduce, descriptor
)
print(f"CUDA function = {1e3 * forward:.5} ms - {1e3 * backward_v:.5} ms")
forward = format_throughput(values_size / forward)
backward_v = format_throughput(reduced_values_size / backward_v)
print(f" {forward} - {backward_v}")
forward, backward_v, _ = bench_descriptor(
torch.ops.reduce_cpp.reduce_custom_autograd, descriptor
)
print(f"CUDA autograd = {1e3 * forward:.5} ms - {1e3 * backward_v:.5} ms")
forward = format_throughput(values_size / forward)
backward_v = format_throughput(reduced_values_size / backward_v)
print(f" {forward} - {backward_v}")
def bench_real_data_w_grad():
descriptor = create_real_data("random-methane-10k.extxyz", ":100", gradients=True)
print("REAL DATA -- with forward gradients")
print("implementation | forward pass | backward values | backward grad")
forward, backward_v, backward_g = bench_descriptor(reduce_python.reduce, descriptor)
forward = f"{1e3 * forward:.5} ms"
backward_v = f"{1e3 * backward_v:.5} ms"
backward_g = f"{1e3 * backward_g:.5} ms"
print(f"python function = {forward} - {backward_v} - {backward_g}")
forward, backward_v, backward_g = bench_descriptor(
reduce_python.reduce_custom_autograd, descriptor
)
forward = f"{1e3 * forward:.5} ms"
backward_v = f"{1e3 * backward_v:.5} ms"
backward_g = f"{1e3 * backward_g:.5} ms"
print(f"python autograd = {forward} - {backward_v} - {backward_g}")
forward, backward_v, backward_g = bench_descriptor(
torch.ops.reduce_cpp.reduce, descriptor
)
forward = f"{1e3 * forward:.5} ms"
backward_v = f"{1e3 * backward_v:.5} ms"
backward_g = f"{1e3 * backward_g:.5} ms"
print(f"C++ function = {forward} - {backward_v} - {backward_g}")
forward, backward_v, backward_g = bench_descriptor(
torch.ops.reduce_cpp.reduce_custom_autograd, descriptor
)
forward = f"{1e3 * forward:.5} ms"
backward_v = f"{1e3 * backward_v:.5} ms"
backward_g = f"{1e3 * backward_g:.5} ms"
print(f"C++ autograd = {forward} - {backward_v} - {backward_g}")
if torch.cuda.is_available():
values_size, pos_grad_s, cell_grad_s = descriptor_sizes(descriptor)
red_values_size, red_pos_grad_s, red_cell_grad_s = reduced_sizes(descriptor)
descriptor = descriptor_to_cuda(descriptor)
forward, backward_v, backward_g = bench_descriptor(
torch.ops.reduce_cpp.reduce, descriptor
)
forward_time = f"{1e3 * forward:.5} ms"
backward_v_time = f"{1e3 * backward_v:.5} ms"
backward_g_time = f"{1e3 * backward_g:.5} ms"
print(
f"CUDA function = {forward_time} - {backward_v_time} - {backward_g_time}"
)
forward = format_throughput((values_size + pos_grad_s + cell_grad_s) / forward)
backward_v = format_throughput(red_values_size / backward_v)
backward_g = format_throughput((red_pos_grad_s + red_cell_grad_s) / backward_g)
print(f" {forward} - {backward_v} - {backward_g}")
forward, backward_v, backward_g = bench_descriptor(
torch.ops.reduce_cpp.reduce_custom_autograd, descriptor
)
forward_time = f"{1e3 * forward:.5} ms"
backward_v_time = f"{1e3 * backward_v:.5} ms"
backward_g_time = f"{1e3 * backward_g:.5} ms"
print(
f"CUDA autograd = {forward_time} - {backward_v_time} - {backward_g_time}"
)
forward = format_throughput((values_size + pos_grad_s + cell_grad_s) / forward)
backward_v = format_throughput(red_values_size / backward_v)
backward_g = format_throughput((red_pos_grad_s + red_cell_grad_s) / backward_g)
print(f" {forward} - {backward_v} - {backward_g}")
if __name__ == "__main__":
do_random = "--random" in sys.argv
do_real = "--real" in sys.argv
do_real_grad = "--real-grad" in sys.argv
if not do_random and not do_real and not do_real_grad:
print("add a flag for the benchmark you want (multiple flags are supported):")
print(" --random fully random data")
print(" --real actual data")
print(" --real-grad actual data, including forward gradients")
sys.exit(1)
if do_random:
bench_random()
print()
if do_real:
bench_real_data()
print()
if do_real_grad:
bench_real_data_w_grad()
print()