-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrn_classifier.py
221 lines (172 loc) · 8.29 KB
/
trn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import data
import math
import time
import torch
import random
import importlib
import torch.nn as nn
from utils import net_utils
# from utils import csv_utils
from optimizer import lars
from utils import gpu_utils
from utils import path_utils
from datetime import timedelta
import torch.distributed as dist
from utils.schedulers import get_policy
from torch.utils.tensorboard import SummaryWriter
from utils.logging import AverageMeter, ProgressMeter
from torch.nn.parallel import DistributedDataParallel as DDP
def trn(cfg,model):
cfg.logger.info(cfg)
if cfg.seed is not None:
random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
torch.cuda.manual_seed_all(cfg.seed)
train, validate = get_trainer(cfg)
if cfg.gpu is not None:
cfg.logger.info("Use GPU: {} for training".format(cfg.gpu))
linear_classifier_layer = model.module[1]
optimizer = get_optimizer(cfg, linear_classifier_layer)
cfg.logger.info(f"=> Getting {cfg.set} dataset")
dataset = getattr(data, cfg.set)(cfg)
lr_policy = get_policy(cfg.lr_policy)(optimizer, cfg)
softmax_criterion = nn.CrossEntropyLoss().cuda()
criterion = lambda output, target: softmax_criterion(output, target)
# optionally resume from a checkpoint
best_val_acc1 = 0.0
best_val_acc5 = 0.0
best_train_acc1 = 0.0
best_train_acc5 = 0.0
if cfg.resume:
best_val_acc1 = resume(cfg, model, optimizer)
run_base_dir, ckpt_base_dir, log_base_dir = path_utils.get_directories(cfg,cfg.gpu)
cfg.ckpt_base_dir = ckpt_base_dir
writer = SummaryWriter(log_dir=log_base_dir)
epoch_time = AverageMeter("epoch_time", ":.4f", write_avg=False)
validation_time = AverageMeter("validation_time", ":.4f", write_avg=False)
train_time = AverageMeter("train_time", ":.4f", write_avg=False)
progress_overall = ProgressMeter(
1, [epoch_time, validation_time, train_time], cfg, prefix="Overall Timing"
)
end_epoch = time.time()
cfg.start_epoch = cfg.start_epoch or 0
last_val_acc1 = None
start_time = time.time()
gpu_info = gpu_utils.GPU_Utils(gpu_index=cfg.gpu)
# Start training
for epoch in range(cfg.start_epoch, cfg.epochs):
cfg.logger.info(
'Model conv 1 {} at epoch {}'.format(torch.sum(model.module[0].conv1.weight),epoch)) ## make sure backbone is not updated
if cfg.world_size > 1:
dataset.sampler.set_epoch(epoch)
lr_policy(epoch, iteration=None)
cur_lr = net_utils.get_lr(optimizer)
start_train = time.time()
train_acc1, train_acc5 = train(
dataset.trn_loader, model,criterion, optimizer, epoch, cfg, writer=writer
)
train_time.update((time.time() - start_train) / 60)
if (epoch + 1) % cfg.test_interval == 0:
if cfg.gpu == cfg.base_gpu:
# evaluate on validation set
start_validation = time.time()
last_val_acc1, last_val_acc5 = validate(dataset.val_loader, model.module, criterion, cfg, writer, epoch)
validation_time.update((time.time() - start_validation) / 60)
# remember best acc@1 and save checkpoint
is_best = last_val_acc1 > best_val_acc1
best_val_acc1 = max(last_val_acc1, best_val_acc1)
best_val_acc5 = max(last_val_acc5, best_val_acc5)
best_train_acc1 = max(train_acc1, best_train_acc1)
best_train_acc5 = max(train_acc5, best_train_acc5)
save = (((epoch+1) % cfg.save_every) == 0) and cfg.save_every > 0
if save or epoch == cfg.epochs - 1:
if is_best:
cfg.logger.info(f"==> best {last_val_acc1:.02f} saving at {ckpt_base_dir / 'model_best.pth'}")
net_utils.save_checkpoint(
{
"epoch": epoch + 1,
"arch": cfg.arch,
"state_dict": model.state_dict(),
"best_acc1": best_val_acc1,
"best_acc5": best_val_acc5,
"best_train_acc1": best_train_acc1,
"best_train_acc5": best_train_acc5,
"optimizer": optimizer.state_dict(),
"curr_acc1": last_val_acc1,
"curr_acc5": last_val_acc5,
},
is_best,
filename=ckpt_base_dir / f"epoch_{epoch}.state",
save=save or epoch == cfg.epochs - 1,
)
elapsed_time = time.time() - start_time
seconds_todo = (cfg.epochs - epoch) * (elapsed_time / cfg.test_interval)
estimated_time_complete = timedelta(seconds=int(seconds_todo))
start_time = time.time()
cfg.logger.info(
f"==> ETA: {estimated_time_complete}\tGPU-M: {gpu_info.gpu_mem_usage()}\tGPU-U: {gpu_info.gpu_utilization()}")
epoch_time.update((time.time() - end_epoch) / 60)
progress_overall.display(epoch)
progress_overall.write_to_tensorboard(
writer, prefix="diagnostics", global_step=epoch
)
writer.add_scalar("test/lr", cur_lr, epoch)
end_epoch = time.time()
if cfg.world_size > 1:
dist.barrier()
def get_trainer(args):
args.logger.info(f"=> Using trainer from trainers.{args.trainer}")
trainer = importlib.import_module(f"trainers.{args.trainer}")
return trainer.train, trainer.validate
def resume(args, model, optimizer):
if os.path.isfile(args.resume):
args.logger.info(f"=> Loading checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume, map_location=f"cuda:{args.gpu}")
if args.start_epoch is None:
args.logger.info(f"=> Setting new start epoch at {checkpoint['epoch']}")
args.start_epoch = checkpoint["epoch"]
best_acc1 = checkpoint["best_acc1"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
args.logger.info(f"=> Loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
return best_acc1
else:
args.logger.info(f"=> No checkpoint found at '{args.resume}'")
def get_optimizer(args, model,fine_tune=False,criterion=None):
for n, v in model.named_parameters():
if v.requires_grad:
args.logger.info("<DEBUG> gradient to {}".format(n))
if not v.requires_grad:
args.logger.info("<DEBUG> no gradient to {}".format(n))
param_groups = model.parameters()
if fine_tune:
# Train Parameters
param_groups = [
{'params': list(
set(model.parameters()).difference(set(model.model.embedding.parameters()))) if args.gpu != -1 else
list(set(model.module.parameters()).difference(set(model.module.model.embedding.parameters())))},
{
'params': model.model.embedding.parameters() if args.gpu != -1 else model.module.model.embedding.parameters(),
'lr': float(args.lr) * 1},
]
if args.ml_loss == 'Proxy_Anchor':
param_groups.append({'params': criterion.proxies, 'lr': float(args.lr) * 100})
if args.optimizer == "sgd":
optimizer = torch.optim.SGD(param_groups, lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
elif args.optimizer == "adam":
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, param_groups), lr=args.lr
)
elif args.optimizer == 'rmsprop':
optimizer = torch.optim.RMSprop(param_groups, lr=args.lr, alpha=0.9, weight_decay = args.weight_decay, momentum = 0.9)
elif args.optimizer == 'adamw':
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, weight_decay = args.weight_decay)
elif args.optimizer == 'lars':
optimizer = lars.LARS(param_groups, lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
else:
raise NotImplemented('Invalid Optimizer {}'.format(args.optimizer))
return optimizer