-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
38 lines (19 loc) · 1.39 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Deep learning course
import os, argparse
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='./data/bids_with_sensitive_recordings/', help='Dataset directory')
parser.add_argument('--label', type=str, default='voc_fold_paralysis', help='Target Diagnosis (Diagnosis that model will be trained to predict)')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--num_workers', type=int, default=8)
#parser.add_argument('--crop_size', type=int, default=224, help='size for randomly or center cropping images')
#parser.add_argument('--image_size', type=int, default=256, help='size to rescale images')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--learning_rate', type=float, default=0.0001, help='base learning rate')
parser.add_argument('--num_epochs', type=int, default=150, help='maximum number of epochs')
#parser.add_argument('--dropout', type=float, default=0.5, help='dropout ratio')
parser.add_argument('--patience', type=int, default=15,help='maximum number of epochs to allow before early stopping')
parser.add_argument('--comment', required=False, type=str, default = 'test_resnet18_model_aug', help='name for TensorboardX')
args = parser.parse_args()
return args