diff --git a/README.md b/README.md index 632333d..d5000fb 100644 --- a/README.md +++ b/README.md @@ -9,40 +9,7 @@ See complete documentation [here](https://ai2-climate-emulator.readthedocs.io/en ## Quickstart -### 1. Install - -Clone this repository. Then assuming [conda](https://docs.conda.io/en/latest/) -is available, run -``` -make create_environment -``` -to create a conda environment called `fme` with dependencies and source -code installed. Alternatively, a Docker image can be built with `make build_docker_image`. -You may verify installation by running `pytest fme/`. - -### 2. Download data and checkpoint - -The checkpoint and a 1-year subsample of the validation data are available at -[this Zenodo repository](https://zenodo.org/doi/10.5281/zenodo.10791086). -Download these to your local filesystem. - -Alternatively, if interested in the complete dataset, this is available via a public -[requester pays](https://cloud.google.com/storage/docs/requester-pays) -Google Cloud Storage bucket. For example, the 10-year validation data (approx. 190GB) -can be downloaded with: -``` -gsutil -m -u YOUR_GCP_PROJECT cp -r gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/data/repeating-climSST-1deg-netCDFs/validation . -``` -It is possible to download a portion of the dataset only, but it is necessary to have -enough data to span the desired prediction period. The checkpoint is also available on GCS at -`gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/checkpoints/ace_ckpt.tar`. - -### 3. Update configuration and run -Update the paths in the [example config](fme/docs/inference-config.yaml). Then in the -`fme` conda environment, run inference with: -``` -python -m fme.ace.inference fme/docs/inference-config.yaml -``` +A quickstart guide may be found [here](https://ai2-climate-emulator.readthedocs.io/en/latest/quickstart.html). ## Available datasets Two versions of the dataset described in [arxiv:2310.02074](https://arxiv.org/abs/2310.02074)