-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fcos.py
114 lines (100 loc) · 4.03 KB
/
train_fcos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import torch
import os
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.modeling import GeneralizedRCNN
from croptrain import add_croptrainer_config, add_ubteacher_config, add_fcos_config
from croptrain.engine.trainer import UBTeacherTrainer, BaselineTrainer
# hacky way to register
from croptrain.modeling.meta_arch.crop_rcnn import CropRCNN
from croptrain.modeling.meta_arch.crop_fcos import CROP_FCOS
import croptrain.data.datasets.builtin
from croptrain.data.datasets.visdrone import register_visdrone
from croptrain.data.datasets.dota import register_dota
from croptrain.modeling.meta_arch.ts_ensemble import EnsembleTSModel
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_croptrainer_config(cfg)
add_ubteacher_config(cfg)
add_fcos_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if not torch.cuda.is_available():
cfg.defrost()
cfg.MODEL.DEVICE = 'cpu'
cfg.freeze()
if cfg.SEMISUPNET.USE_SEMISUP:
Trainer = UBTeacherTrainer
else:
Trainer = BaselineTrainer
if cfg.CROPTRAIN.USE_CROPS:
cfg.defrost()
cfg.MODEL.FCOS.NUM_CLASSES += 1
cfg.freeze()
if "visdrone" in cfg.DATASETS.TRAIN[0] or "visdrone" in cfg.DATASETS.TEST[0]:
data_dir = os.path.join(os.environ['SLURM_TMPDIR'], "VisDrone")
if not args.eval_only:
register_visdrone(cfg.DATASETS.TRAIN[0], data_dir, cfg, True)
register_visdrone(cfg.DATASETS.TEST[0], data_dir, cfg, False)
if "dota" in cfg.DATASETS.TRAIN[0] or "dota" in cfg.DATASETS.TEST[0]:
data_dir = os.path.join(os.environ['SLURM_TMPDIR'], "DOTA")
if not args.eval_only:
register_dota(cfg.DATASETS.TRAIN[0], data_dir, cfg, True)
register_dota(cfg.DATASETS.TEST[0], data_dir, cfg, False)
if args.eval_only:
if cfg.SEMISUPNET.USE_SEMISUP:
model = Trainer.build_model(cfg)
model_teacher = Trainer.build_model(cfg)
ensem_ts_model = EnsembleTSModel(model_teacher, model)
DetectionCheckpointer(
ensem_ts_model, save_dir=cfg.OUTPUT_DIR
).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume)
#res = Trainer.test(cfg, ensem_ts_model.modelTeacher)
if cfg.CROPTRAIN.USE_CROPS:
res = Trainer.test_crop(cfg, ensem_ts_model.modelTeacher, 0)
else:
if "dota" in cfg.DATASETS.TEST[0]:
res = Trainer.test_crop(cfg, ensem_ts_model.modelTeacher, 0)
else:
res = Trainer.test(cfg, ensem_ts_model.modelTeacher)
else:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
if cfg.CROPTRAIN.USE_CROPS:
res = Trainer.test_crop(cfg, model, 0)
else:
if "dota" in cfg.DATASETS.TEST[0]:
res = Trainer.test_crop(cfg, model, 0)
else:
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("No of gpus used: {}".format(args.num_gpus))
print("Cuda detected {} gpus".format(torch.cuda.device_count()))
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)