-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMyMNISTsolution.py
82 lines (52 loc) · 2.88 KB
/
MyMNISTsolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 5 19:10:34 2017
@author: aakash.chotrani
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/",one_hot = True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
x = tf.placeholder('float',[None,784])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer ={'weights': tf.Variable(tf.random_normal([784,n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer ={'weights': tf.Variable(tf.random_normal([n_nodes_hl1,n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer ={'weights': tf.Variable(tf.random_normal([n_nodes_hl2,n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer ={'weights': tf.Variable(tf.random_normal([n_nodes_hl3,n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes]))}
#(input_data*weights) + biases
l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']),hidden_1_layer['biases'])#input goes through the sum box
l1 = tf.nn.relu(l1)#rectified linear is activation function applied to layer 1
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']),hidden_2_layer['biases'])#input goes through the sum box
l2 = tf.nn.relu(l1)#rectified linear is activation function applied to layer 2
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']),hidden_3_layer['biases'])#input goes through the sum box
l3 = tf.nn.relu(l3)#rectified linear is activation function applied to layer 3
output = tf.matmul(l3,output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = prediction,labels = y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
#cycles of feed forward and back propagation
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x,epoch_y = mnist.train.next_batch(batch_size)
_,c = sess.run([optimizer,cost],feed_dict = {x: epoch_x,y: epoch_y})
epoch_loss += c
print('Epoch',epoch,'completed out of', hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.arg_max(prediction,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct,'float'))
print('Accuracy: ',accuracy.eval({x:mnist.test.images,y:mnist.test.labels}))
train_neural_network(x)