-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeshenov-weil-etale-cohomology.tex
2618 lines (2249 loc) · 122 KB
/
beshenov-weil-etale-cohomology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[leqno,12pt]{article}
\setlength{\textheight}{23cm}
\setlength{\textwidth}{16cm}
\setlength{\oddsidemargin}{0cm}
\setlength{\evensidemargin}{0cm}
\setlength{\topmargin}{0cm}
%% \usepackage{hyperref}
\usepackage{amsmath,amssymb}
\usepackage{amsthm}
\def\address#1#2{\begingroup
\noindent\parbox[t]{9cm}{%
\small{\scshape\ignorespaces#1}\par\vskip1ex
\noindent\small{\itshape E-mail address}%
\/: #2\par\vskip4ex}\hfill%
\endgroup}%
\renewcommand{\baselinestretch}{1.2}
\renewcommand{\thefootnote}{}
\theoremstyle{plain}
\newtheorem{theorem}{\indent\sc Theorem}[section]
\newtheorem{lemma}[theorem]{\indent\sc Lemma}
\newtheorem{corollary}[theorem]{\indent\sc Corollary}
\newtheorem{proposition}[theorem]{\indent\sc Proposition}
\newtheorem{conjecture}[theorem]{\indent\sc Conjecture}
\newtheorem{maintheorem}{Theorem}
\renewcommand*{\themaintheorem}{\Roman{maintheorem}}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{\indent\sc Definition}
\newtheorem{remark}[theorem]{\indent\sc Remark}
%%%%% Proof %%%%%
\renewcommand{\proofname}{\indent\sc Proof.}
\pagestyle{myheadings} \markright{Weil-\'{e}tale cohomology and duality for
arithmetic schemes in negative weights}
\title{\uppercase{Weil-\'{e}tale cohomology and duality for arithmetic schemes
in negative weights}}
\author{\textsc{Alexey Beshenov}}
\date{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Here are my definitions for this paper
\usepackage{pdflscape} % Landscape diagram
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\Tot}{Tot}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\rk}{rk}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\AA}{\mathbb{A}}
\renewcommand{\div}{\text{\it div}}
\newcommand{\tor}{\text{\it tor}}
\newcommand{\cotor}{\text{\it cotor}}
\newcommand{\dfn}{\mathrel{\mathop:}=}
\newcommand{\rdfn}{=\mathrel{\mathop:}}
\newcommand{\Wc}{\text{\it W,c}}
\newcommand{\ar}{\text{\it ar}}
\newcommand{\et}{\text{\it \'{e}t}}
\newcommand{\fg}{\text{\it fg}}
\newcommand{\iHom}{\underline{\Hom}}
\newcommand{\RHom}{R\!\Hom}
\newcommand{\DZ}{{\mathbf{D} (\ZZ)}}
\usepackage{tikz-cd}
\usetikzlibrary{arrows}
\usetikzlibrary{calc}
\usetikzlibrary{babel}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{patterns}
\newcommand{\tikzpb}{\ar[phantom,pos=0.2]{dr}{\text{\large$\lrcorner$}}}
\newcommand{\tikzpbur}{\ar[phantom,pos=0.2]{dl}{\text{\large$\llcorner$}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\maketitle
%%%%%%%%%%%%%%% footnote %%%%%%%%%%%%%%%%
\footnote{ %2010 MSC numbers
2010 \textit{Mathematics Subject Classification}.
Primary 14F20; Secondary 14F42.}
\footnote{ %key words and phrases
\textit{Key words and phrases}.
Motivic cohomology, \'{e}tale cohomology, Weil-\'{e}tale cohomology.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{abstract}
Flach and Morin constructed in \cite{Flach-Morin-2018} Weil-\'{e}tale
cohomology $H^i_\Wc (X, \ZZ(n))$ for a proper, regular arithmetic scheme $X$
(i.e. separated and of finite type over $\Spec \ZZ$) and $n \in \ZZ$. In the
case when $n < 0$, we generalize their construction to an arbitrary arithmetic
scheme $X$, thus removing the proper and regular assumption. The construction
assumes finite generation of suitable \'{e}tale motivic cohomology groups.
\end{abstract}
\section{Introduction}
Stephen Lichtenbaum, in a series of papers
\cite{Lichtenbaum-2005,Lichtenbaum-2009-Euler-char,Lichtenbaum-2009-number-rings},
has envisioned a new cohomology theory for schemes, known as
\textbf{Weil-\'{e}tale cohomology}. The case of varieties over finite fields
$X/\FF_q$ was further studied by Geisser
\cite{Geisser-2004,Geisser-2006,Geisser-2010-arithmetic-homology}. Morin defined
in \cite{Morin-2014} Weil-\'{e}tale cohomology with compact support
$H^i_\Wc (X, \ZZ)$ for $X \to \Spec\ZZ$ separated, of finite type, proper, and
regular. This construction was further generalized by Flach and Morin in
\cite{Flach-Morin-2018} to the groups $H^i_\Wc (X, \ZZ(n))$ with arbitrary
weights $n \in \ZZ$, under the same assumptions on $X$.
The aim of this paper is to remove the assumption that $X$ is proper and regular
and, following the ideas of \cite{Flach-Morin-2018}, to construct the groups
$H^i_\Wc (X, \ZZ(n))$ for any $X$ separated and of finite type over $\Spec\ZZ$
for the case of strictly negative weights $n < 0$.
As Flach and Morin already suggest in \cite[Remark 3.11]{Flach-Morin-2018},
we rework all their constructions in terms of cycle complexes $\ZZ^c (n)$, which
were considered by Geisser in \cite{Geisser-2010} in the context of arithmetic
duality theorems.
In a forthcoming paper we apply the results of this text to relate the
cohomology groups $H_\Wc^i (X, \ZZ(n))$ to the special value of the zeta
function $\zeta (X, s)$ at $s = n < 0$.
\subsection*{Notation and conventions}
\paragraph{Arithmetic schemes.}
In this work, an \textbf{arithmetic scheme} is a scheme $X$ that is separated
and of finite type over $\Spec \ZZ$.
\paragraph{Abelian groups.}
Let $A$ be an abelian group. For $m \ge 1$ we denote by ${}_m A$ its $m$-torsion
subgroup, and by $A_m$ the quotient $A/mA$:
$$0 \to {}_m A \to A \xrightarrow{\times m} A \to A_m \to 0$$
We denote by $A_\div$ (resp. $A_\tor$) the maximal divisible subgroup
(resp. maximal torsion subgroup), and by $A_\cotor$ the quotient $A/A_\tor$.
% For brevity, we will write $\Hom (A,B)$ for $\Hom_\ZZ (A,B)$, $\Ext (A,B)$ for
% $\Ext_\ZZ^1 (A,B)$, $A\otimes B$ for $A\otimes_\ZZ B$, and so on.
We say that $A$ is of \textbf{cofinite type} if it is $\QQ/\ZZ$-dual to a
finitely generated abelian group: $A = \Hom (B,\QQ/\ZZ)$ for a finitely
generated $B$.
\paragraph{Complexes.}
All our constructions take place in the derived category of abelian groups
$\DZ$. For our purposes, we introduce the following terminology. Recall first
that a complex of abelian groups $A^\bullet$ is \textbf{perfect} if it is
bounded (i.e. $H^i (A^\bullet) = 0$ for $|i| \gg 0$), and $H^i (A^\bullet)$ are
finitely generated abelian groups.
\begin{definition}
\label{dfn:almost-of-(co)finite-type}
A complex of abelian groups $A^\bullet$ is \textbf{almost perfect}
if the cohomology groups $H^i (A^\bullet)$ are finitely generated, and
bounded, except for possible finite $2$-torsion in arbitrarily high degree.
That is, $H^i (A^\bullet) = 0$ for $i \ll 0$ and $H^i (A^\bullet)$ is finite
$2$-torsion for $i \gg 0$.
A complex of abelian groups $A^\bullet$ is of \textbf{cofinite type} if the
cohomology groups $H^i (A^\bullet)$ are of cofinite type and bounded.
A complex of abelian groups $A^\bullet$ is \textbf{almost of cofinite type}
if the cohomology groups $H^i (A^\bullet)$ are of cofinite type and
bounded, except for possible finite $2$-torsion in arbitrarily high
degree.
\end{definition}
This terminology is ad hoc and was invented for this text, since such complexes
will appear frequently. Some basic observations about almost perfect and almost
cofinite type complexes are collected in
Appendix~\ref{app:homological-algebra}. We note that this finite $2$-torsion in
arbitrarily high degrees could be removed by working with the Artin--Verdier
topology $\overline{X}_\et$ instead of the usual \'{e}tale topology $X_\et$.
The general construction and basic properties of $\overline{X}_\et$ are treated
in \cite[Appendix~A]{Flach-Morin-2018}, but only for a \emph{proper and regular}
arithmetic scheme $X$. Our methods circumvent this restriction at the cost of
some technical hurdles with $2$-torsion.
\paragraph{\'{E}tale cohomology.}
For an arithmetic scheme $X$ and a complex of \'{e}tale sheaves
$\mathcal{F}^\bullet$, we denote by
\[ R\Gamma (X_\et, \mathcal{F}^\bullet) ~
\text{(resp. }R\Gamma_c (X_\et, \mathcal{F}^\bullet), ~
R\widehat{\Gamma}_c (X_\et, \mathcal{F}^\bullet)\text{)} \]
the complex that computes the corresponding cohomology, resp. cohomology with
compact support, and modified cohomology with compact support. For the
convenience of the reader, we review the definitions in
Appendix~\ref{app:modified-cohomology-with-compact-support}. The purpose of
$R\widehat{\Gamma}_c (X_\et, \mathcal{F}^\bullet)$ is to take care of real
places $X (\RR)$. There exists a canonical projection
$R\widehat{\Gamma}_c (X_\et, \mathcal{F}^\bullet) \to R\Gamma_c (X_\et,
\mathcal{F}^\bullet)$, which is an isomorphism if $X (\RR) = \emptyset$.
\paragraph{$G$-equivariant sheaves and their cohomology.}
Let $\mathcal{X}$ be a topological space with an action of a discrete group $G$.
A \textbf{$G$-equivariant sheaf} $\mathcal{F}$ on $\mathcal{X}$ can be defined
as an espace \'{e}tal\'{e} $\pi\colon E\to \mathcal{X}$ with a $G$-action on $E$
such that the projection $\pi$ is $G$-equivariant (see e.g. \cite[\S II.6 +
pp.\,594]{MacLane-Moerdijk}). We denote by $\mathbf{Sh} (G, \mathcal{X})$ the
corresponding category.
The equivariant global sections are defined by
$$\Gamma (G,\mathcal{X},\mathcal{F}) = \mathcal{F} (\mathcal{X})^G,$$
with $G$ acting on
$\mathcal{F} (\mathcal{X}) = \{ s\colon \mathcal{X}\to E \mid \pi\circ s = id_\mathcal{X} \}$
via $(g\cdot s) (x) = g\cdot s (g^{-1}\cdot x)$. The corresponding
\textbf{$G$-equivariant cohomology} is given by the right derived functors of
$\Gamma (G,\mathcal{X},-)$.
More details on $G$-equivariant sheaves can be found in
\cite[Chapitre~2]{Morin-these}. For our modest purposes, it suffices to know
that any $G$-module $A$ gives rise to the corresponding abelian $G$-equivariant
constant sheaf. The latter corresponds to the espace \'{e}tal\'{e}
$\mathcal{X}\times A \to \mathcal{X}$, where $A$ is endowed with the discrete
topology.
\paragraph{$G_\RR$-equivariant cohomology of $X (\CC)$.}
Given an arithmetic scheme $X$, we denote by $X (\CC)$ the set of complex points
of $X$ endowed with the analytic topology. It carries the natural action of the
Galois group $G_\RR \dfn \Gal (\CC/\RR)$.
We consider the $G_\RR$-modules
\[ \ZZ (n) \dfn (2\pi i)^n\,\ZZ, \quad
\QQ (n) \dfn (2\pi i)^n\,\QQ, \quad
\QQ/\ZZ (n) \dfn \QQ (n) / \ZZ (n) \]
as constant $G_\RR$-equivariant sheaves on $X (\CC)$.
Then $R\Gamma_c (X (\CC), A (n))$ for $A = \ZZ, \QQ, \QQ/\ZZ$ (the complex that
computes singular cohomology with compact support of $X (\CC)$ with
coefficients in $A (n)$) is a complex of $G_\RR$-modules, and we can further
take the group cohomology (resp. Tate cohomology):
\begin{align*}
R\Gamma_c (G_\RR, X (\CC), A (n)) & \dfn R\Gamma (G_\RR, R\Gamma_c (X (\CC), A (n))),\\
R\widehat{\Gamma}_c (G_\RR, X (\CC), A (n)) & \dfn R\widehat{\Gamma} (G_\RR, R\Gamma_c (X (\CC), A (n))).
\end{align*}
By definition, this is the \textbf{$G_\RR$-equivariant cohomology}
(resp. \textbf{$G_\RR$-equivariant Tate cohomology})
\textbf{with compact support} of $X (\CC)$ with coefficients in $A (n)$.
\paragraph{Motivic cohomology $H^i (X_\et, \ZZ^c (n))$.}
Our construction is based on motivic cohomology defined in terms of complexes
of sheaves $\ZZ^c (n)$ on $X_\et$. We follow the notation of
\cite{Geisser-2010}.
Briefly, for $i \ge 0$ we consider the algebraic simplex
$$\Delta^i = \Spec \ZZ[t_0,\ldots,t_i]/(\sum_i t_i - 1).$$
We fix a negative weight $n \le 0$. Let $z_n (X,i)$ be the free abelian group
generated by the closed integral subschemes $Z \subset X \times \Delta^i$ of
dimension $n + i$ that intersect the faces properly. Then $z_n (X, \bullet)$ is
a (homological) complex of abelian groups whose differentials are given by the
alternating sum of intersections with the faces. We consider the (cohomological)
complex of \'{e}tale sheaves
$$\ZZ^c (n) \dfn z_n (\text{\textvisiblespace}, -\bullet) [2n].$$
The boundedness from below of $\ZZ^c(n)$ is not known in general; it is a
variant of the Beilinson--Soul\'{e} vanishing conjecture. To work
unconditionally with the derived functors, we use $K$-injective resolutions
\cite{Spaltenstein-1988,Serpe-2003} (resp. $K$-flat resolutions for the derived
tensor products).
To avoid any confusion, we use cohomological numbering for all complexes
in this paper, so we set
$$H^i (X_\et, \ZZ^c(n)) \dfn H^i (R\Gamma (X_\et, \ZZ^c(n))).$$
(\cite{Geisser-2010} uses homological numbering.)
If $X$ is \emph{proper, regular and of pure dimension $d$}, then for $n \le 0$
there exists an isomorphism
\begin{equation}
\label{eqn:Zc(n)-vs-Z(d-n)}
H^i (X_\et, \ZZ^c(n)) \cong H^{2d+i} (X_\et, \ZZ (d-n)),
\end{equation}
where the right-hand side is the ``usual'' motivic cohomology defined for
positive weights; see the original Bloch's paper \cite{Bloch-1986} for the case
of varieties, and also \cite{Geisser-2004-Dedekind,Geisser-2005} for the
definitions and properties over $\Spec \ZZ$.
\subsection*{Assumptions}
\paragraph{Weights.}
In this paper, $n < 0$ always denotes a strictly negative integer,
which will be the weight in the cohomology groups $H^i_\Wc (X, \ZZ(n))$.
\paragraph{Finite generation conjecture.}
Our construction of the Weil-\'{e}tale cohomology groups $H^i_\Wc (X,\ZZ(n))$
uses the following assumption.
\begin{conjecture}
$\mathbf{L}^c (X_\et,n)$: for an arithmetic scheme $X$ and $n < 0$,
the cohomology groups $H^i (X_\et, \ZZ^c (n))$ are finitely generated for all
$i \in \ZZ$.
\end{conjecture}
See Proposition~\ref{prop:Lc-Xet-n-vs-L-Xet-d-n} for the precise relation of
$\mathbf{L}^c (X_\et,n)$ to other conjectures that appear in the literature.
We refer to \S\ref{sec:known-cases-of-Lc-Xet-n} for the cases where the
conjecture is known.
\subsection*{Main results}
Before outlining the construction of Weil-\'{e}tale cohomology, we state the
main results of this paper that make it possible. One of our main objects is the
following complex of abelian sheaves $\ZZ (n)$ on $X_\et$.
\begin{definition}[{\cite[\S 3.1]{Flach-Morin-2018}}, {\cite[\S 7]{Geisser-2004}}]
\label{dfn:sheaf-Z(n)}
Let $X$ be an arithmetic scheme and $n < 0$. For a prime $p$, consider
the localization $X [1/p]$, and let $\mu_{p^r}$ be the sheaf of $p^r$-th
roots of unity on $X [1/p]$. We define the twist of $\mu_{p^r}$ by $n$
as
$$\mu_{p^r}^{\otimes n} = \iHom_{X[1/p]} (\mu_{p^r}^{\otimes (-n)}, \ZZ/p^r\ZZ).$$
Now $\ZZ (n)$ is the complex of sheaves on $X_\et$ given by
\[ \ZZ (n) = \QQ/\ZZ (n) [-1],
\quad \text{where }
\QQ/\ZZ (n) = \bigoplus_p \varinjlim_r j_{p!} \mu_{p^r}^{\otimes n}, \]
and $j_p$ is the canonical open immersion $X[1/p] \to X$.
\end{definition}
The above sheaves $\ZZ (n)$ should not be confused with cycle complexes;
the latter are $\ZZ^c (n)$ in the context of this paper.
In \S\ref{sec:arithmetic-duality-theorem} we prove the following arithmetic
duality theorem relating the two.
\begin{maintheorem}
\label{theorem-I}
Assuming Conjecture $\mathbf{L}^c (X_\et,n)$, there is a quasi-isomorphism
\[ R\widehat{\Gamma}_c (X_\et, \ZZ (n)) \xrightarrow{\cong}
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ/\ZZ [-2]). \]
\end{maintheorem}
The second result we need is related to the following morphism of complexes.
\begin{definition}
\label{dfn:u-infty}
We define
$v_\infty^*\colon R\Gamma_c (X_\et, \QQ/\ZZ (n)) \to R\Gamma_c (G_\RR, X
(\CC), \QQ/\ZZ (n))$ as the morphism in the derived category $\DZ$ induced by
the comparison of \'{e}tale and analytic topology
\[ \Gamma_c (X_\et, \QQ/\ZZ (n)) \to
\Gamma_c (G_\RR, X (\CC), \alpha^* \QQ/\ZZ (n)) \cong
\Gamma_c (G_\RR, X (\CC), \QQ/\ZZ (n)) \]
(see Proposition~\ref{prop:inverse-image-gamma} and
\ref{propn:image-of-Q/Zn-under-alpha}). Then we let
$u_\infty^*\colon R\Gamma_c (X_\et, \ZZ(n)) \to R\Gamma_c (G_\RR, X (\CC), \ZZ (n))$
be the composition
\begin{multline*}
R\Gamma_c (X_\et, \ZZ(n)) \dfn R\Gamma_c (X_\et, \QQ/\ZZ (n)) [-1]
\xrightarrow{v_\infty^* [-1]} R\Gamma_c (G_\RR, X (\CC), \QQ/\ZZ (n)) [-1]
\\ \to R\Gamma_c (G_\RR, X (\CC), \ZZ (n))
\end{multline*}
where the last arrow is induced by $\QQ/\ZZ (n) [-1] \to \ZZ (n)$, which comes
from the distinguished triangle of constant $G_\RR$-equivariant sheaves
$\ZZ (n) \to \QQ (n) \to \QQ/\ZZ (n) \to \ZZ (n) [1]$.
\end{definition}
Then \S\ref{sec:theorem-II} is devoted to the following result.
\begin{maintheorem}
\label{theorem-II}
The morphism $u_\infty^*$ is torsion, i.e. there exists a nonzero integer $m$
such that $mu^*_\infty = 0$
\end{maintheorem}
\subsection*{Sketch of the construction of Weil-\'{e}tale cohomology}
Here we describe the structure of this paper, as well as our construction of the
Weil-\'{e}tale complexes $R\Gamma_\Wc (X, \ZZ (n))$.
First, \S\ref{sec:arithmetic-duality-theorem} is devoted to the proof of
Theorem~\ref{theorem-I}. Some of its consequences are deduced in
\S\ref{sec:consequences-of-theorem-I}. Namely, if we assume Conjecture
$\mathbf{L}^c (X_\et, n)$, then $R\Gamma (X_\et, \ZZ^c (n))$ is an almost
perfect complex, while $R\Gamma_c (X_\et, \ZZ (n))$ is almost of cofinite type
in the sense of Definition~\ref{dfn:almost-of-(co)finite-type}. For this, we
first make a small digression in \S\ref{sec:GR-equivariant-cohomology} to
analyze what kind of complexes we obtain for the $G_\RR$-equivariant cohomology
of $X (\CC)$.
Theorem~\ref{theorem-I} is used in \S\ref{sec:RGamma-fg} to define a morphism
$\alpha_{X,n}$ in the derived category (see Definition~\ref{def:RGamma-fg}),
and declare $R\Gamma_\fg (X, \ZZ(n))$ to be its cone:
\begin{multline*}
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-2]) \xrightarrow{\alpha_{X,n}}
R\Gamma_c (X_\et, \ZZ (n)) \to
R\Gamma_\fg (X, \ZZ(n)) \\
\to \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-1])
\end{multline*}
The notation ``\emph{fg}'' comes from the fact that $R\Gamma_\fg (X, \ZZ(n))$ is
an almost perfect complex in the sense of
Definition~\ref{dfn:almost-of-(co)finite-type}. Thanks to specific properties of
the complexes involved, it turns out that $R\Gamma_\fg (X, \ZZ(n))$ is defined
up to a \emph{unique} isomorphism in the derived category (which is not normally
expected from a cone).
Then in \S\ref{sec:theorem-II} we establish Theorem~\ref{theorem-II}, and it is
used in \S\ref{sec:RGamma-Wc} to define Weil-\'{e}tale complexes
$R\Gamma_\Wc (X, \ZZ(n))$. To do this, we deduce from Theorem~\ref{theorem-II}
that $u_\infty^* \circ \alpha_{X,n} = 0$, which implies that there exists a
morphism in the derived category
$$i_\infty^*\colon R\Gamma_\fg (X, \ZZ (n)) \to R\Gamma_c (G_\RR, X (\CC), \ZZ(n))$$
---see \eqref{eqn:diagram-defining-everything} below. We choose a mapping fiber
of $i_\infty^*$ and call it $R\Gamma_\Wc (X, \ZZ (n))$, which turns out to be a
perfect complex. Finally, in \S\ref{sec:known-cases-of-Lc-Xet-n} we consider
the cases of $X$ for which Conjecture $\mathbf{L}^c (X_\et, n)$ is known,
and hence our results hold unconditionally, and in
\S\ref{sec:comparison-with-FM} we verify that if $X$ is proper and regular, our
complex $R\Gamma_\Wc (X, \ZZ (n))$ is isomorphic to that constructed in
\cite{Flach-Morin-2018} by Flach and Morin.
There are two appendices to this paper: Appendix~\ref{app:homological-algebra}
collects some lemmas from homological algebra, and
Appendix~\ref{app:modified-cohomology-with-compact-support} gives an overview of
the definitions of \'{e}tale cohomology with compact support
$R\Gamma_c (X_\et, -)$ and its modified version
$R\widehat{\Gamma}_c (X_\et, -)$.
\vspace{1em}
The definition of $R\Gamma_\Wc (X,\ZZ(n))$ fits in the following commutative
diagram with distinguished triangles in the derived category $\DZ$:
\begin{equation}
\label{eqn:diagram-defining-everything}
\begin{tikzcd}[column sep=1em,font=\small]
&[-3em] \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-2]) \ar{d}{\alpha_{X,n}}[swap]{\text{Dfn.~\ref{def:RGamma-fg}}} \ar{r} &[-2.5em] 0 \ar{d} \\
& R\Gamma_c (X_\et, \ZZ(n)) \ar{d}\ar{r}{u_\infty^*}[swap]{\text{Dfn.~\ref{dfn:u-infty}}} & R\Gamma_c (G_\RR, X (\CC), \ZZ(n))\ar{d}{id} \\
R\Gamma_\Wc (X, \ZZ (n)) \ar{r} & R\Gamma_\fg (X, \ZZ(n)) \ar[dashed]{r}{i_\infty^*}\ar{d} & R\Gamma_c (G_\RR, X (\CC), \ZZ(n)) \ar{r} \ar{d} & R\Gamma_\Wc (X, \ZZ (n)) [1] \\
& \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-1]) \ar{r} & 0
\end{tikzcd}
\end{equation}
Our construction follows \cite{Flach-Morin-2018}, and the resulting complex is
the same if $X$ is proper and regular, which is the assumption considered
by Flach and Morin. Here is a brief comparison between the notations.
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{cc}
\hline
\textbf{this paper} & \textbf{Flach--Morin} \\
\hline
{\renewcommand{\arraystretch}{1}\begin{tabular}{c} $X\to\Spec\ZZ$ \\ separated, of finite type \\ ~ \end{tabular}} & {\renewcommand{\arraystretch}{1}\begin{tabular}{c} $X\to\Spec\ZZ$ \\ separated, of finite type \\ proper, regular, equidimensional\end{tabular}} \\
\hline
$n < 0$ & $n \in \ZZ$ \\
\hline
{\renewcommand{\arraystretch}{1}\begin{tabular}{c} cycle complexes \\ $\ZZ^c (n)$ \end{tabular}} & {\renewcommand{\arraystretch}{1}\begin{tabular}{c} cycle complexes \\ $\ZZ (d-n)[2d]$, $d = \dim X$ \end{tabular}} \\
\hline
$R\Gamma_\fg (X, \ZZ(n))$ & {\renewcommand{\arraystretch}{1}\begin{tabular}{c} $R\Gamma_W (\overline{X}, \ZZ(n))$, \\ up to finite $2$-torsion \end{tabular}} \\
\hline
$R\Gamma_\Wc (X,\ZZ(n))$ & $R\Gamma_\Wc (X, \ZZ(n))$ \\
\hline
\end{tabular}
\end{center}
{\small
\subsection*{Acknowledgments}
This text is based on the results of my PhD thesis, carried out at the
Universit\'{e} de Bordeaux and Universiteit Leiden under the supervision of
Baptiste Morin and Bas Edixhoven. I am very grateful to them for their
support. I thank Stephen Lichtenbaum and Niranjan Ramachandran who kindly agreed
to act as reviewers for my thesis and provided me with many useful comments and
suggestions. I am also indebted to Matthias Flach, since the ideas of this paper
come from \cite{Flach-Morin-2018}. Moreover, the work of Thomas Geisser on
arithmetic duality \cite{Geisser-2010} is also crucial for this paper, and his
work on Weil-\'{e}tale cohomology for varieties over finite fields
\cite{Geisser-2004,Geisser-2006,Geisser-2010-arithmetic-homology} has been of
great influence for me. I thank Maxim Mornev for several fruitful
conversations. This paper was edited during my stay at the Center for Research
in Mathematics (CIMAT), Guanajuato, Mexico. I~am grateful personally to Pedro
Luis del \'{A}ngel and Xavier G\'{o}mez Mont for their hospitality.
Finally, I am indebted to the anonymous referee whose sharp and insightful
comments on an earlier draft helped to improve the exposition.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Proof of Theorem~I}
\label{sec:arithmetic-duality-theorem}
At the heart of our constructions is an arithmetic duality theorem for cycle
complexes established by Thomas Geisser in \cite{Geisser-2010}. The purpose of
this section is to deduce Theorem~\ref{theorem-I} from Geisser's duality.
We would like to obtain a quasi-isomorphism of complexes
\[ R\widehat{\Gamma}_c (X_\et, \ZZ (n)) \xrightarrow{\cong}
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ/\ZZ [-2]). \]
Here $R\widehat{\Gamma}_c (X_\et, \ZZ (n))$ denotes the modified \'{e}tale
cohomology with compact support, described in
Appendix~\ref{app:modified-cohomology-with-compact-support}. We note that
\cite{Geisser-2010} uses the notation ``$R\Gamma_c$'' for our
``$R\widehat{\Gamma}_c$'', but we take special care to distinguish the two
things, since we also need the usual \'{e}tale cohomology with compact support
$R\Gamma_c (X_\et, \ZZ (n))$.
We split our proof of Theorem~\ref{theorem-I} into two propositions.
\begin{proposition}
For any $n < 0$ we have a quasi-isomorphism of complexes
\begin{equation}
\label{eqn:duality-quasi-isomorphism-1}
R\widehat{\Gamma}_c (X_\et, \ZZ (n)) \cong
\varinjlim_m \RHom (R\Gamma (X_\et, \ZZ/m\ZZ^c (n)), \QQ/\ZZ [-2]).
\end{equation}
\begin{proof}
We unwind our definition of $\ZZ (n)$ for $n < 0$ and reduce everything to
the results from \cite{Geisser-2010}. Since
$\ZZ (n) \dfn \bigoplus_p \varinjlim_r j_{p!} \mu_{p^r}^{\otimes n} [-1]$,
it suffices to show that for every prime $p$ and $r\ge 1$ there is a
quasi-isomorphism of complexes
\begin{equation}
\label{eqn:duality-quasi-isomorphism-1-pr}
R\widehat{\Gamma}_c (X_\et, j_{p!} \mu_{p^r}^{\otimes n} [-1]) \cong
\RHom (R\Gamma (X_\et, \ZZ^c/p^r (n)), \QQ/\ZZ [-2]),
\end{equation}
and then pass to the corresponding filtered colimits.
As in Definition~\ref{dfn:sheaf-Z(n)}, here $j_p$ denotes the canonical open
immersion $j_p\colon X[1/p] \hookrightarrow X$. We further denote by $f$ the
structure morphism $X\to \Spec \ZZ$ and by $f_p$ the structure morphism
$X [1/p] \to \Spec \ZZ [1/p]$:
\[ \begin{tikzcd}
X [1/p]\ar[hookrightarrow]{r}{j_p}\ar{d}[swap]{f_p} & X\ar{d}{f} \\
\Spec \ZZ [1/p]\ar[hookrightarrow]{r} & \Spec \ZZ
\end{tikzcd} \]
As we are going to change the base scheme, let us write $\Hom_X (-,-)$ for
the $\Hom$ between sheaves on $X_\et$ and $\iHom_X (-,-)$ for the
internal $\Hom$. Instead of $\Hom_{\Spec R}$, we will simply write
$\Hom_R$.
Applying various results from \cite{Geisser-2004} and \cite{Geisser-2010},
we obtain a quasi-isomorphism of complexes of sheaves
\[ R\iHom_X (j_{p!} \mu_{p^r}^{\otimes n} [-1], \ZZ^c_X (0)) \cong \hspace{4cm} \]
\begin{align*}
\hspace{2cm} & \cong R j_{p*} R\iHom_{X [1/p]} (\mu_{p^r}^{\otimes n} [-1], \ZZ^c_{X [1/p]} (0)) && \text{by \cite[Prop. 7.10~(c)]{Geisser-2010}} \\
& \cong R j_{p*} R\iHom_{X[1/p]} (f_p^* \mu_{p^r}^{\otimes n} [-1], \ZZ^c_{X [1/p]} (0)) \\
& \cong R j_{p*} R f^!_p R\iHom_{\ZZ [1/p]} (\mu_{p^r}^{\otimes n} [-1], \ZZ^c_{\ZZ [1/p]} (0)) && \text{by \cite[Prop. 7.10~(c)]{Geisser-2010}} \\
& \cong R j_{p*} R f^!_p R\iHom_{\ZZ [1/p]} (\mu_{p^r}^{\otimes n} [-1], \mathbb{G}_\mathrm{m} [1]) && \text{by \cite[Lemma~7.4]{Geisser-2010}} \\
& \cong R j_{p*} R f^!_p R\iHom_{\ZZ [1/p]} (\mu_{p^r}^{\otimes n}, \mathbb{G}_\mathrm{m}) [2] \\
& \cong R j_{p*} R f^!_p \, \mu_{p^r}^{\otimes (1-n)} [2] \\
& \cong R j_{p*} R f^!_p \, \Bigl(\ZZ_{\ZZ [1/p]}/p^r (1-n)\Bigr) [2] && \text{by \cite[Thm.~1.2]{Geisser-2004}} \\
& \cong R j_{p*} R f^!_p \, \ZZ^c_{\ZZ [1/p]}/p^r (n) && \text{by \eqref{eqn:Zc(n)-vs-Z(d-n)}} \\
& \cong R j_{p*} \ZZ^c_{X [1/p]} / p^r (n) && \text{by \cite[Prop.~7.10~(a)]{Geisser-2010}} \\
& \cong R j_{p*} j_p^*\ZZ^c_X/p^r (n) \cong \ZZ^c_X/p^r (n) && \text{by \cite[Thm.~7.2~(a), Prop.~2.3]{Geisser-2010}}
\end{align*}
After applying $R\Gamma (X_\et, -)$, we get a quasi-isomorphism of
complexes of abelian groups
\[
\RHom (j_{p!} \mu_{p^r}^{\otimes n} [-1], \ZZ^c_X (0)) \cong
R\Gamma (X_\et, \ZZ^c_X/p^r (n)).
\]
Now according to the duality \cite[Theorem~7.8]{Geisser-2010},
\[
\RHom (j_{p !} \mu_{p^r}^{\otimes n} [-1], \ZZ^c (0)) \cong
\RHom (R\widehat{\Gamma}_c (X_\et, j_{p !} \mu_{p^r}^{\otimes n} [-1]), \QQ/\ZZ [-2]).
\]
What we end up with is a quasi-isomorphism
\[ R\Gamma (X_\et, \ZZ^c/p^r (n)) \cong \RHom (R\widehat{\Gamma}_c (X_\et,
j_{p !} \mu_{p^r}^{\otimes n} [-1]), \QQ/\ZZ [-2]). \]
The groups $\widehat{H}^i_c (X_\et, j_{p!} \mu_{p^r}^{\otimes n} [-1])$ are
finite (the sheaves $j_{p!} \mu_{p^r}^{\otimes n}$ are constructible),
so applying $\RHom (-,\QQ/\ZZ [-2])$ yields
\eqref{eqn:duality-quasi-isomorphism-1-pr}.
\end{proof}
\end{proposition}
To conclude the proof of Theorem~\ref{theorem-I}, we identify the complex on the
right-hand side of \eqref{eqn:duality-quasi-isomorphism-1}. For this, we need
Conjecture $\mathbf{L}^c (X_\et, n)$.
\begin{proposition}
Assuming Conjecture $\mathbf{L}^c (X_\et, n)$, there is
a quasi-isomorphism
\[ \varinjlim_m \RHom (R\Gamma (X_\et, \ZZ/m\ZZ^c (n)), \QQ/\ZZ [-2]) \cong
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ/\ZZ [-2]). \]
\begin{proof}
Consider short exact sequences
\[ 0 \to H^i (X_\et, \ZZ^c (n))_m \to
H^i (X_\et, \ZZ/m\ZZ^c (n)) \to
{}_m H^{i+1} (X_\et, \ZZ^c (n)) \to 0 \]
If we now take $\Hom (-,\QQ/\ZZ)$ and filtered colimits $\varinjlim_m$,
we get
\begin{multline}
\label{eqn:short-exact-sequence-with-dirlim}
0 \to \varinjlim_m \Hom ({}_m H^{i+1} (X_\et, \ZZ^c (n)), \QQ/\ZZ) \to \\
\varinjlim_m \Hom (H^i (X_\et, \ZZ/m\ZZ^c (n)), \QQ/\ZZ) \to \\
\varinjlim_m \Hom (H^i (X_\et, \ZZ^c (n))_m, \QQ/\ZZ) \to 0
\end{multline}
By Conjecture $\mathbf{L}^c (X_\et, n)$, the group
$H^{i+1} (X_\et, \ZZ^c (n))$ is finitely generated, and hence
the first $\varinjlim_m$ in the short exact sequence
\eqref{eqn:short-exact-sequence-with-dirlim} vanishes, and we obtain
isomorphisms
\[ \varinjlim_m \Hom (H^i (X_\et, \ZZ^c (n))_m, \QQ/\ZZ) \xrightarrow{\cong}
\varinjlim_m \Hom (H^i (X_\et, \ZZ/m\ZZ^c (n)), \QQ/\ZZ). \]
It remains to note that the left-hand side is canonically isomorphic to
$\Hom (H^i (X_\et, \ZZ^c (n)), \QQ/\ZZ)$, again thanks to the finite
generation of $H^i (X_\et, \ZZ^c (n))$, under Conjecture
$\mathbf{L}^c (X_\et, n)$.
To see this, observe that if $A$ is a finitely generated abelian group,
there is a canonical isomorphism
$$\varinjlim_m \Hom (A_m, \QQ/\ZZ) \cong \Hom (A, \QQ/\ZZ)$$
induced by $A \to A_m$, and then applying the functor $\Hom (-, \QQ/\ZZ)$
and $\varinjlim_m$. Since $\QQ/\ZZ$ is a torsion group, any homomorphism
$A\to \QQ/\ZZ$ is killed by some $m$, hence factors through $A_m$.
\end{proof}
\end{proposition}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{$G_\RR$-equivariant cohomology of $X (\CC)$}
\label{sec:GR-equivariant-cohomology}
We begin with some elementary homological algebra.
\begin{lemma}
Let $A^\bullet$ be a perfect complex of $\ZZ G_\RR$-modules.
\begin{enumerate}
\item[1)] The complex $A^\bullet \otimes^\mathbf{L} \QQ/\ZZ$ is of cofinite
type.
\item[2)]
$R\Gamma (G_\RR, A^\bullet \otimes \QQ) \cong (A^\bullet \otimes
\QQ)^{G_\RR}$ is a perfect complex of $\QQ$-vector spaces, and the complex
$R\widehat{\Gamma} (G_\RR, A^\bullet \otimes \QQ)$ is quasi-isomorphic to
$0$.
\item[3)]
$R\widehat{\Gamma} (G_\RR, A^\bullet \otimes^\mathbf{L} \QQ/\ZZ) \cong
R\widehat{\Gamma} (G_\RR, A^\bullet [+1])$, and these complexes have finite
$2$-torsion cohomology.
\item[4)] $R\Gamma (G_\RR, A^\bullet)$ is almost perfect, and
$R\Gamma (G_\RR, A^\bullet \otimes^\mathbf{L} \QQ/\ZZ)$ is almost of
cofinite type.
\end{enumerate}
\begin{proof}
The universal coefficient theorem gives us short exact sequences
$$0 \to H^i (A^\bullet)_m \to H^i (A^\bullet \otimes^\mathbf{L} \ZZ/m\ZZ) \to {}_m H^{i+1} (A^\bullet) \to 0$$
The colimit of these over $m$ is
$$0 \to H^i (A^\bullet) \otimes \QQ/\ZZ \to H^i (A^\bullet \otimes^\mathbf{L} \QQ/\ZZ) \to H^{i+1} (A^\bullet)_\tor \to 0$$
Here $H^i (A^\bullet) \otimes \QQ/\ZZ$ is injective, hence the short exact
sequence splits. We see that $H^i (A^\bullet \otimes^\mathbf{L} \QQ/\ZZ)$ is
of cofinite type and vanishes for $|i| \gg 0$, i.e. that
$A^\bullet \otimes^\mathbf{L} \QQ/\ZZ$ is of cofinite type.
Let us now consider the spectral sequences
\begin{align}
\label{eqn:homological-lemma-ss-1} E_2^{pq} & = H^p (G_\RR, H^q (A^\bullet \otimes \QQ)) \Longrightarrow H^{p+q} (G_\RR, A^\bullet \otimes \QQ), \\
\label{eqn:homological-lemma-ss-2} E_2^{pq} & = \widehat{H}^p (G_\RR, H^q (A^\bullet \otimes \QQ)) \Longrightarrow \widehat{H}^{p+q} (G_\RR, A^\bullet \otimes \QQ).
\end{align}
We recall that $H^p (G_\RR, -)$ are $2$-torsion groups for $p > 0$. Since
$H^q (A^\bullet \otimes \QQ)$ are $\QQ$-vector spaces, it follows that
$E_2^{pq} = 0$ for $p > 0$ in \eqref{eqn:homological-lemma-ss-1}, and the
spectral sequence degenerates. Similarly, the Tate cohomology groups
$\widehat{H}^p (G_\RR, H^q (A^\bullet \otimes \QQ))$ are trivial for
\emph{all} $p$ for the same reasons, so that
\eqref{eqn:homological-lemma-ss-2} is trivial. This proves part 2).
Part 3) now follows from the distinguished triangle
\[ R\widehat{\Gamma} (G_\RR, A^\bullet) \to
R\widehat{\Gamma} (G_\RR, A^\bullet \otimes \QQ) \to
R\widehat{\Gamma} (G_\RR, A^\bullet \otimes^\mathbf{L} \QQ/\ZZ) \to
R\widehat{\Gamma} (G_\RR, A^\bullet) [1] \]
Next, examining the spectral sequence
$$E_2^{pq} = H^p (G_\RR, H^q (A^\bullet)) \Longrightarrow H^{p+q} (G_\RR, A^\bullet),$$
we see that the groups $H^i (G_\RR, A^\bullet)$ are finitely generated, zero
for $i \ll 0$, and torsion for $i \gg 0$. The latter is $2$-torsion. To see
that, let $P_\bullet \twoheadrightarrow \ZZ$ be the bar-resolution of $\ZZ$
by free $\ZZ G_\RR$-modules. Consider the morphism of complexes
\[ \begin{tikzcd}
\cdots\ar{r} & P_3\ar{r}\ar{d}{2} & P_2\ar{r}\ar{d}{2} & P_1\ar{r}\ar{d}{2} & P_0\ar{r}\ar{d}{2-N} & 0 \\
\cdots\ar{r} & P_3\ar{r} & P_2\ar{r} & P_1\ar{r} & P_0\ar{r} & 0
\end{tikzcd} \]
where $N$ denotes the norm map. The proof of
\cite[Theorem~6.5.8]{Weibel-1994} shows that the above morphism induces
multiplication by $2$ on $H^i (G_\RR,-)$ for $i > 0$, and it is
null-homotopic. Since $A^\bullet$ is bounded, we see that the above morphism
induces multiplication by $2$ on $H^i (G_\RR, A^\bullet)$ for $i \gg 0$.
Similarly, analyzing
$$E_2^{pq} = H^p (G_\RR, H^q (A^\bullet \otimes^\mathbf{L} \QQ/\ZZ)) \Longrightarrow H^{p+q} (G_\RR, A^\bullet \otimes^\mathbf{L} \QQ/\ZZ).$$
we see that $H^i (G_\RR, A^\bullet \otimes^\mathbf{L} \QQ/\ZZ)$ are groups of
cofinite type. To see that these are finite $2$-torsion for $i \gg 0$,
consider the triangle
\[ R\Gamma (G_\RR, A^\bullet) \to
R\Gamma (G_\RR, A^\bullet \otimes \QQ) \to
R\Gamma (G_\RR, A^\bullet \otimes^\mathbf{L} \QQ/\ZZ) \to
R\Gamma (G_\RR, A^\bullet) [1] \]
Here $R\Gamma (G_\RR, A^\bullet \otimes \QQ)$ is bounded, and therefore
$H^i (G_\RR, A^\bullet \otimes^\mathbf{L} \QQ/\ZZ) \cong H^{i+1} (G_\RR,
A^\bullet)$ for $i \gg 0$.
\end{proof}
\end{lemma}
\begin{proposition}
\label{prop:equivariant-coho-of-X(C)}
Let $X$ be an arithmetic scheme. Then $X (\CC)$ has the following types of
complexes as its cohomology:
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|c|c|c|c|}
\hline
& $A=\ZZ$ & $A=\QQ$ & $A=\QQ/\ZZ$ \\
\hline
$R\Gamma_c (X (\CC), A(n))$ & perfect${}_{/\ZZ}$ & perfect${}_{/\QQ}$ & cofinite type \\
\hline
$R\Gamma_c (G_\RR, X (\CC), A (n))$ & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} almost \\ perfect \end{tabular}} & perfect${}_{/\QQ}$ & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} almost \\ cofinite type \end{tabular}} \\
\hline
$R\widehat{\Gamma}_c (G_\RR, X (\CC), A (n))$ & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} finite \\ $2$-torsion \end{tabular}} & $\cong 0$ & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} finite \\ $2$-torsion \end{tabular}} \\
\hline
\end{tabular}
\end{center}
Moreover, there is an isomorphism
\begin{equation}
\label{eqn:Tate-vs-normal-cohomology-of-X(C)}
\widehat{H}^i_c (G_\RR, X (\CC), \ZZ(n)) \cong
H^i_c (G_\RR, X (\CC), \ZZ(n))
\quad\text{for }i \ge 2 \dim X - 1.
\end{equation}
\begin{proof}
The perfectness of $R\Gamma_c (X (\CC), \ZZ (n))$ follows from the fact that
$X (\CC)$ has the homotopy type of a finite CW-complex. This result goes
back to van der Waerden \cite{van-der-Waerden-30}; more recent expositions
(of more general results) can be found e.g. in \cite{Lojasiewicz-1964} and
\cite{Hironaka-1974}.
The rest of the table is an application of the previous lemma to
$R\Gamma_c (X(\CC), \ZZ(n))$.
Finally, for \eqref{eqn:Tate-vs-normal-cohomology-of-X(C)}, consider the
spectral sequences
\begin{align*}
\widehat{E}^{pq}_2 = \widehat{H}^p (G_\RR, H^q_c (X (\CC), \ZZ(n))) & \Longrightarrow
\widehat{H}^i_c (G_\RR, X (\CC), \ZZ(n)), \\
E^{pq}_2 = H^p (G_\RR, H^q_c (X (\CC), \ZZ(n))) & \Longrightarrow
H^i_c (G_\RR, X (\CC), \ZZ(n)).
\end{align*}
Here $\widehat{H}^p (G_\RR, -) \cong H^p (G_\RR, -)$ for
$p \ge 1$. Moreover, $H^q_c (X (\CC), \ZZ(n)) = 0$ for $q \ge {2 \dim X - 1}$,
for the reasons of topological dimension of $X (\CC)$.
\end{proof}
\end{proposition}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Some consequences of Theorem~I}
\label{sec:consequences-of-theorem-I}
Now we deduce some consequences from the duality Theorem~\ref{theorem-I}.
\begin{lemma}
\label{lemma:morphism-hat-Hc(Xet,Z(n))->Hc(Xet,Z(n))}
The canonical morphism
$\phi^i\colon \widehat{H}^i_c (X_\et, \ZZ (n)) \to H^i_c (X_\et, \ZZ (n))$
sits in a long exact sequence
\begin{multline*}
\cdots \to \widehat{H}^{i-1}_c (G_\RR, X (\CC), \ZZ (n)) \to
\widehat{H}_c^i (X_\et, \ZZ(n)) \xrightarrow{\phi^i}
H_c^i (X_\et, \ZZ(n)) \\
\to \widehat{H}^i_c (G_\RR, X (\CC), \ZZ (n)) \to \cdots
\end{multline*}
where the groups $\widehat{H}^i_c (G_\RR, X (\CC), \ZZ (n))$ are finite
$2$-torsion. In particular,
\begin{enumerate}
\item[$1)$] the kernel and cokernel of $\phi^i$ are finite $2$-torsion,
\item[$2)$] if $X (\RR) = \emptyset$, then
$R\widehat{\Gamma}_c (G_\RR, X (\CC), \ZZ (n)) = 0$ and
$\widehat{H}^i_c (X_\et, \ZZ (n)) \cong H^i_c (X_\et, \ZZ (n))$.
\end{enumerate}
\begin{proof}
The exact sequence follows from the definition of modified \'{e}tale cohomology
with compact support and Artin's comparison theorem. This is proved in
\cite[Lemma~6.14]{Flach-Morin-2018}. In particular, the argument shows that
$R\widehat{\Gamma}_c (G_\RR, X (\CC), \ZZ (n)) \cong
R\widehat{\Gamma} (G_\RR, v^* Rf_* \ZZ(n))$ where
$v\colon \Spec \CC \to \Spec \ZZ$ and $f\colon X\to \Spec \ZZ$,
and $R\widehat{\Gamma}_c (G_\RR, X (\CC), \ZZ (n)) = 0$ if
$X (\RR) = \emptyset$.
The fact that $\widehat{H}^i_c (G_\RR, X (\CC), \ZZ (n))$ are finite
$2$-torsion is a part of Proposition~\ref{prop:equivariant-coho-of-X(C)}.
\end{proof}
\end{lemma}
\begin{proposition}
\label{prop:motivic-cohomology-duality-consequences}
Let $X$ be an arithmetic scheme of dimension $d$ satisfying Conjecture
$\mathbf{L}^c (X_\et,n)$ for $n < 0$.
\begin{enumerate}
\item[$1)$] If $X (\RR) = \emptyset$, then $H^i (X_\et, \ZZ^c (n)) = 0$ for
$i > 1$ or $i < -2d$.
\item[$2)$] In general, $H^i (X_\et, \ZZ^c (n)) = 0$ for $i < -2d$, and
$H^i (X_\et, \ZZ^c (n))$ is a finite $2$-torsion group for $i > 1$.
\item[$3)$] If $X/\FF_q$ is a variety over a finite field, then the groups
$H^i (X_\et, \ZZ^c(n))$ are finite for all $i \in \ZZ$.
\end{enumerate}
In general, we have the following cohomology:
\begin{center}
\renewcommand{\arraystretch}{1.5}
\begin{tabular}{|c|c|cl|cl|}
\hline
\textbf{groups} & \textbf{type} & \multicolumn{2}{c|}{$i \ll 0$} & \multicolumn{2}{c|}{$i \gg 0$} \\
\hline
$H^i (X_\et, \ZZ^c (n))$ & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} finitely \\ generated \end{tabular}} & $0$ & for $i < -2d$ & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} finite \\ $2$-torsion \end{tabular}} & for $i > 1$ \\
\hline
$\widehat{H}^i_c (X_\et, \ZZ (n))$ & cofinite & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} finite \\ $2$-torsion \end{tabular}} & for $i < 1$ & $0$ & for $i > 2d + 2$ \\
\hline
$H^i_c (X_\et, \ZZ (n))$ & cofinite & $0$ & for $i < 1$ & {\renewcommand{\arraystretch}{0.75}\begin{tabular}{c} finite \\ $2$-torsion \end{tabular}} & for $i > 2d + 2$ \\
\hline
\end{tabular}
\end{center}
In particular, $R\Gamma (X_\et, \ZZ^c (n))$ is an almost perfect complex,
while $R\Gamma_c (X_\et, \ZZ (n))$ is almost of cofinite type in the sense of
Definition~{\rm\ref{dfn:almost-of-(co)finite-type}}.
\begin{proof}
If $X (\RR) = \emptyset$, then our duality Theorem~\ref{theorem-I} gives
\[ \Hom (H^{2-i} (X_\et, \ZZ^c (n)), \QQ/\ZZ) \cong
\widehat{H}^i_c (X_\et, \ZZ (n)) \stackrel{X(\RR)=\emptyset}{\cong}
H^i_c (X_\et, \ZZ (n)). \]
We have $H^i_c (X_\et, \ZZ (n)) = 0$ for $i < 1$ by the definition of
$\ZZ (n)$, and $H^i_c (X_\et, \ZZ (n)) = H^{i-1} (X_\et, \QQ/\ZZ(n)) = 0$
for $i > 2d + 2$ for the reasons of $\ell$-adic cohomological dimension
\cite[Expos\'{e}~X, Th\'{e}or\`{e}me~6.2]{SGA4}. This proves part 1) of the proposition.
In part 2), the group $H^i (X_\et, \ZZ^c (n))$ is finite $2$-torsion for
$i > 1$, thanks to part 1) and
Lemma~\ref{lemma:morphism-hat-Hc(Xet,Z(n))->Hc(Xet,Z(n))}. Moreover, we have
$H^i (X_\et, \ZZ^c (n)) \cong H^i (X_\et, \QQ^c (n))$ for $i < -2d$
according to \cite[Lemma~5.12]{Morin-2014}. Conjecture $L^c (X_\et, n)$
implies that these groups are $\QQ$-vector spaces finitely generated over
$\ZZ$, hence trivial.
In part 3), the cohomology groups
$H^i (X_\et, \ZZ (n)) = H^{i-1} (X_\et, \QQ/\ZZ (n))$ are finite for $n < 0$
by \cite[Theorem~3]{Kahn-2003}.
\end{proof}
\end{proposition}
\begin{remark}
If $X$ is proper and regular of dimension $d$, then using
\eqref{eqn:Zc(n)-vs-Z(d-n)}, we note that the Beilinson--Soul\'{e} vanishing
conjecture (see, for example, \cite[\S 4.3.4]{Kahn-2005}) predicts that
$H^i (X_\et, \ZZ^c (n)) = 0$ for $i < -2d$. Therefore, we proved this under
Conjecture $\mathbf{L}^c (X_\et, n)$.
\end{remark}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Complex $R\Gamma_\fg (X, \ZZ(n))$}
\label{sec:RGamma-fg}
The purpose of this section is to define auxiliary complexes
$R\Gamma_\fg (X, \ZZ(n))$, which are used below in the construction of
Weil-\'{e}tale cohomology.
\begin{definition}
\label{def:RGamma-fg}
Assuming Conjecture $\mathbf{L}^c (X_\et,n)$, consider a morphism
$\alpha_{X,n}$ in the derived category $\DZ$ given by the
composition
\[ \begin{tikzcd}[column sep=4em]
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ[-2]) \ar{r}{\QQ \twoheadrightarrow \QQ/\ZZ}\ar{ddr}[swap]{\alpha_{X,n}} & \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ/\ZZ[-2]) \\
& R\widehat{\Gamma}_c (X_\et, \ZZ (n)) \ar{u}{\text{Theorem~\ref{theorem-I}}}[swap]{\cong} \ar{d}{\text{proj.}} \\
& R\Gamma_c (X_\et, \ZZ (n))
\end{tikzcd} \]
Here the first arrow is induced by the canonical projection $\QQ \to \QQ/\ZZ$,
and the last arrow is the canonical projection from the modified cohomology
with compact support to the usual cohomology with compact support
(see Appendix~\ref{app:modified-cohomology-with-compact-support}).
We define the complex $R\Gamma_\fg (X, \ZZ(n))$ as a cone of $\alpha_{X,n}$:
\begin{multline*}
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-2]) \xrightarrow{\alpha_{X,n}}
R\Gamma_c (X_\et, \ZZ (n)) \to
R\Gamma_\fg (X, \ZZ(n)) \\
\to \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-1])
\end{multline*}
Further, we denote
$$H^i_\fg (X, \ZZ (n)) \dfn H^i (R\Gamma_\fg (X, \ZZ (n))).$$
\end{definition}
\begin{remark}
\label{rmk:alpha-X-n-determined-by-cohomology}
Under Conjecture $\mathbf{L}^c (X_\et, n)$, the groups
$H^i_c (X_\et, \ZZ (n))$ are of cofinite type by Theorem~\ref{theorem-I},
while $\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-2])$ is a complex of
$\QQ$-vector spaces. Therefore, the morphism $\alpha_{X,n}$ is completely
determined by the maps between cohomology groups
\[ H^i (\alpha_{X,n})\colon
\Hom (H^{2-i} (X_\et, \ZZ^c (n)), \QQ) \to
H^i_c (X_\et, \ZZ (n)) \]
---see Lemma~\ref{lemma:morphisms-in-DAb-between-cplx-of-Q-vs-and-almost-cofinite-type-cplx}.
\end{remark}
\begin{remark}
We note that our $R\Gamma_\fg (X, \ZZ (n))$ plays the same role as
$R\Gamma_W (\overline{X}_\et, \ZZ (n))$ in
\cite[Definition~3.6]{Flach-Morin-2018}. We use a different notation since
Flach and Morin work with the Artin--Verdier topology and their complex
$R\Gamma_W (\overline{X}_\et, \ZZ (n))$ is perfect, while our complex can have
finite $2$-torsion in arbitrarily high degree.
\end{remark}
We first note that the definition simplifies when $X$ has no real places.
\begin{proposition}
\label{prop:RGamma-fg-for-X(R)-empty}
If $X (\RR) = \emptyset$, then
\[ R\Gamma_\fg (X, \ZZ (n)) \cong
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \ZZ [-1]). \]
\begin{proof}
In this case
$R\widehat{\Gamma}_c (X_\et, \ZZ (n)) \to R\Gamma_c (X_\et, \ZZ (n))$
is the identity morphism, and therefore $\alpha_{X,n}$ sits in the following
commutative diagram with distinguished columns:
\[ \begin{tikzcd}
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-2])\ar{d}{\alpha_{X,n}} \ar{r}{\mathrm{id}} & \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-2])\ar{d} \\
R\Gamma_c (X_\et, \ZZ (n))\ar{d} \ar{r}{\cong}[swap]{\text{Theorem~\ref{theorem-I}}} & \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ/\ZZ [-2])\ar{d} \\
R\Gamma_\fg (X, \ZZ (n))\ar{d} \ar[dashed]{r}{\cong} & \RHom (R\Gamma (X_\et, \ZZ^c (n)), \ZZ [-1])\ar{d} \\
\RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-1]) \ar{r}{\mathrm{id}} & \RHom (R\Gamma (X_\et, \ZZ^c (n)), \QQ [-1])
\end{tikzcd} \]
Here the first column is our definition of $R\Gamma_\fg (X, \ZZ (n))$,
and the second column is induced by the distinguished triangle
$\ZZ \to \QQ \to \QQ/\ZZ \to \ZZ [1]$.
\end{proof}
\end{proposition}
\begin{proposition}
\label{prop:RGammafg-almost-perfect}
Assuming Conjecture $\mathbf{L}^c (X_\et, n)$, the complex
$R\Gamma_\fg (X, \ZZ (n))$ is almost perfect in the sense of
Definition~{\rm\ref{dfn:almost-of-(co)finite-type}}, i.e. its cohomology
groups $H^i_\fg (X, \ZZ (n))$ are finitely generated, trivial for $i \ll 0$,
and $2$-torsion for $i \gg 0$.
\begin{proof}
By the definition of $R\Gamma_\fg (X, \ZZ (n))$, there are short exact
sequences
\[ 0 \to \coker H^i (\alpha_{X,n}) \to
H^i_\fg (X, \ZZ (n)) \to
\ker H^{i+1} (\alpha_{X,n}) \to 0 \]
The morphism $\alpha_{X,n}$ is given at the level of cohomology by
\begin{multline}
\label{eqn:H(alpha-X-n)}
H^i (\alpha_{X,n})\colon
\Hom (H^{2-i} (X_\et, \ZZ^c (n)), \QQ) \xrightarrow{\psi^i}
\Hom (H^{2-i} (X_\et, \ZZ^c (n)), \QQ/\ZZ) \xrightarrow{\cong} \\
\widehat{H}^i_c (X_\et, \ZZ (n)) \xrightarrow{\phi^i} H^i_c (X_\et, \ZZ (n))
\end{multline}
where $H^{2-i} (X_\et, \ZZ^c (n))$ is a finitely generated abelian group