-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimprovement.py
94 lines (84 loc) · 3.47 KB
/
improvement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn import metrics
d = 5
X = pd.read_csv(f'datasets/X{d}.csv')
X = np.array(X)
y = pd.read_csv(f'datasets/y{d}.csv')
y = np.array(y)
y = y.reshape((1000,))
eps_s = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
min_pts = [1, 5, 7, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, 50]
best_ad = 0
best_acc = 0
best_v = 0
best_s = 0
best_e = 0
best_m = 0
for e in eps_s:
for m in min_pts:
db = DBSCAN(eps=e, min_samples=m).fit(X)
labels = db.labels_
if d == 2 or d == 3:
indices_one = labels == 1
indices_zero = labels == 0
labels[indices_one] = 0 # replacing 1s with 0s
labels[indices_zero] = 1 # replacing 0s with 1s
n_noise_ = list(labels).count(-1)
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
if n_noise_ < 200 and 1 < n_clusters_:
# if metrics.accuracy_score(y, labels) > best_acc and metrics.v_measure_score(y, labels) > best_v:
if metrics.adjusted_rand_score(y, labels) > best_ad:
best_ad = metrics.adjusted_rand_score(y, labels)
# best_s = metrics.silhouette_score(X, labels)
# best_acc = metrics.accuracy_score(y, labels)
# best_v = metrics.v_measure_score(y, labels)
best_e = e
best_m = m
print(f'best eps: {best_e}')
print(f'best min_samples: {best_m}')
db = DBSCAN(eps=best_e, min_samples=best_m).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
if d == 2 or d == 3:
indices_one = labels == 1
indices_zero = labels == 0
labels[indices_one] = 0 # replacing 1s with 0s
labels[indices_zero] = 1 # replacing 0s with 1s
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print(f'Accuracy: {metrics.accuracy_score(y, labels):0.3f}')
print("Homogeneity: %0.3f" % metrics.homogeneity_score(y, labels))
print("Completeness: %0.3f" % metrics.completeness_score(y, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(y, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(y, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(y, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels))
# #############################################################################
# Plot result
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], '.', markerfacecolor=tuple(col),
markeredgecolor='k')
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], '.', markerfacecolor=tuple(col),
markeredgecolor='k')
plt.title(f'improvement --- n_clusters: {n_clusters_}, n_noise: {n_noise_}, acc: {metrics.accuracy_score(y, labels)}')
plt.show()