-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_UViT.py
199 lines (171 loc) · 7.22 KB
/
main_UViT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import argparse
import pytorch_lightning as pl
from pytorch_lightning.callbacks import LearningRateMonitor, ModelSummary, ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from dataset import LitLOLDataModule
from diffusion import LitDiffusion, EnlightDiffusion
from pytorch_lightning.strategies import DDPStrategy
import yaml
from utils.gpuoption import gpuoption
from encoder import Unet_encoder
from model_UViT import UViT
def train(config):
with open(config.cfg, "r") as infile:
cfg = yaml.full_load(infile)
config = argparse.Namespace(**cfg)
# DDP server debug
if config.devices[0] != 0:
config.results_folder = config.results_folder + str(config.devices[0])
# debug setting
if config.fast_dev_run:
if not config.accelerator == 'cpu':
config.devices = 1
# config.strategy = 'auto'
config.use_wandb = False
# if config.batch_size >= 2:
# config.batch_size //= 2
if config.use_dataset == 'LOL':
train_folders = [config.train_folders_v1]
elif config.use_dataset == "LOLv2":
train_folders = [config.train_folders_v2]
elif config.use_dataset == 'LOL+LOLv2':
train_folders = [config.train_folders_v1, config.train_folders_v2]
elif config.use_dataset == 'LOL+LOLv2+VELOL':
train_folders = [config.train_folders_v1, config.train_folders_v2, config.train_folders_VE]
else:
NotImplementedError("dataset not supported")
test_folder = config.test_folder
# seed
pl.seed_everything(seed=config.seed, workers=True)
# data
litdataModule = LitLOLDataModule(config, train_folders, [test_folder])
litdataModule.setup()
# model
encoder_model = Unet_encoder(
unet_dim=config.unet_dim,
in_dim=config.cond_in_dim,
unet_outdim=config.unet_outdim,
dim_mults=config.dim_mults,
use_attn=config.use_attn,
use_wn=config.use_wn,
use_in=config.use_in,
weight_init=config.weight_init,
on_res=config.cond_on_res,
get_feats=False,
use_cond=False)
noise_model = UViT(
unet_dim = config.unet_dim,
unet_outdim = config.unet_outdim,
dim_mults = config.dim_mults,
use_ViT = config.use_ViT,
use_wn = config.use_wn,
use_instance_norm = config.use_in,
weight_init = config.weight_init,
stronger_cond = config.stronger_cond,
in_dim = config.in_dim,
dim_adjust_factor = config.dim_adjust_factor,
num_blocks = config.num_blocks,
heads = config.heads,
ffn_expansion_factor = config.ffn_expansion_factor,
bias = config.bias,
LayerNorm_type= config.LayerNorm_type,
skip = config.skip,
flash_attn_valid_switch = config.flash_attn_valid_switch,
lambda_num= config.lambda_num
)
diffusion = EnlightDiffusion(noise_model, config)
if config.diffusion_path != '':
litmodel = LitDiffusion.load_from_checkpoint(
config.diffusion_path, diffusion_model=diffusion, encoder=encoder_model, config=config, strict=False)
else:
litmodel = LitDiffusion(diffusion, encoder=encoder_model, config=config)
callbacks = [
ModelSummary(max_depth=3),
LearningRateMonitor(),
ModelCheckpoint(monitor='valid/combined',
save_last=False, mode='max', auto_insert_metric_name=False,
filename='epoch={epoch:02d}-monitor={valid/combined:.2f}'),
]
# strategy and trainer
if config.strategy is not None:
if config.strategy == 'ddp':
config.strategy = DDPStrategy(static_graph=False, find_unused_parameters=True)
trainer = pl.Trainer(
benchmark=config.benchmark,
enable_checkpointing=config.enable_checkpointing,
gradient_clip_algorithm=config.gradient_clip_algorithm,
gradient_clip_val=config.gradient_clip_val,
accumulate_grad_batches=config.accumulate_grad_batches,
accelerator=config.accelerator,
precision=config.precision,
log_every_n_steps=config.log_every_n_steps,
detect_anomaly=config.detect_anomaly,
deterministic=config.deterministic,
num_sanity_val_steps=config.num_sanity_val_steps,
check_val_every_n_epoch=config.check_val_every_n_epoch,
max_epochs=config.max_epochs,
min_epochs=config.min_epochs,
callbacks=callbacks,
devices=config.devices,
limit_train_batches=config.limit_train_batches,
fast_dev_run=config.fast_dev_run,
logger=True,
strategy=config.strategy,
profiler=config.profiler,
)
else:
trainer = pl.Trainer(
benchmark=config.benchmark,
enable_checkpointing=config.enable_checkpointing,
gradient_clip_algorithm=config.gradient_clip_algorithm,
gradient_clip_val=config.gradient_clip_val,
accumulate_grad_batches=config.accumulate_grad_batches,
accelerator=config.accelerator,
precision=config.precision,
log_every_n_steps=config.log_every_n_steps,
detect_anomaly=config.detect_anomaly,
deterministic=config.deterministic,
num_sanity_val_steps=config.num_sanity_val_steps,
check_val_every_n_epoch=config.check_val_every_n_epoch,
max_epochs=config.max_epochs,
min_epochs=config.min_epochs,
fast_dev_run=config.fast_dev_run,
devices=config.devices,
limit_train_batches=config.limit_train_batches,
callbacks=callbacks,
logger=True,
# strategy=config.strategy,
profiler=config.profiler
)
trainer.fit(model=litmodel, datamodule=litdataModule)
# after train, test it
if not config.fast_dev_run and config.max_epochs > 1:
ckpt_path = trainer.checkpoint_callback.best_model_path
litmodel = LitDiffusion.load_from_checkpoint(
ckpt_path, diffusion_model=diffusion, encoder=encoder_model, config=config, strict=False)
# new trainer
trainer = pl.Trainer(
accelerator=config.accelerator,
devices=[config.devices[0]] if isinstance(config.devices, list) else config.devices,
logger=True,
callbacks=callbacks,
precision=config.precision,
log_every_n_steps=config.log_every_n_steps,
)
trainer.test(litmodel, datamodule=litdataModule)
if __name__ == '__main__':
# to make calculation faster
torch.set_float32_matmul_precision('high')
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
# # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
# to fix 4090 NCCL P2P bug in driver
if gpuoption():
print('NCCL P2P is configured to disabled, new driver should fix this bug')
# select config
parser = argparse.ArgumentParser()
parser.add_argument("--cfg", default='cfg/train/train.yaml')
config = parser.parse_args()
train(config)