-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembree_rays.py
231 lines (200 loc) · 7 KB
/
embree_rays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import embree
import numpy as np
def get_centroids(V, F):
return V[F].mean(axis=1)
def get_cross_products(V, F):
vert = V[F]
V0 = vert[:, 0, :]
C = np.cross(vert[:, 1, :] - V0, vert[:, 2, :] - V0)
return C
def get_face_areas(V, F):
C = get_cross_products(V, F)
C_norms = np.sqrt(np.sum(C**2, axis=1))
A = C_norms/2
return A
def get_surface_normals(V, F):
C = get_cross_products(V, F)
C_norms = np.sqrt(np.sum(C**2, axis=1))
N = C/C_norms.reshape(C.shape[0], 1)
return N
def get_surface_normals_and_face_areas(V, F):
C = get_cross_products(V, F)
C_norms = np.clip(np.sqrt(np.sum(C**2.0, axis=1)), a_min=1e-10, a_max=None)
print(C_norms)
exit()
N = C/C_norms.reshape(C.shape[0], 1)
A = C_norms/2
return N, A
def intersect(V, F, origins, dirs, tnear_override=None):
device = embree.Device()
geometry = device.make_geometry(embree.GeometryType.Triangle)
scene = device.make_scene()
scene.set_flags(4)
vertex_buffer = geometry.set_new_buffer(
embree.BufferType.Vertex, # buf_type
0, # slot
embree.Format.Float3, # fmt
3 * np.dtype('float32').itemsize, # byte_stride
V.shape[0], # item_count
)
vertex_buffer[:] = V[:]
index_buffer = geometry.set_new_buffer(
embree.BufferType.Index, # buf_type
0, # slot
embree.Format.Uint3, # fmt
3 * np.dtype('uint32').itemsize, # byte_stride,
F.shape[0]
)
index_buffer[:] = F[:]
geometry.commit()
scene.attach_geometry(geometry)
geometry.release()
scene.commit()
m = origins.shape[0]
if dirs.shape[0] != m:
raise Exception('origins and dirs need the same number of rows')
rayhit = embree.RayHit1M(m)
context = embree.IntersectContext()
rayhit.org[:] = origins
rayhit.dir[:] = dirs
if not (tnear_override is None):
rayhit.tnear[:] = tnear_override[:]
else:
rayhit.tnear[:] = 0
rayhit.tfar[:] = np.inf
rayhit.flags[:] = 0
rayhit.geom_id[:] = embree.INVALID_GEOMETRY_ID
scene.intersect1M(context, rayhit)
I = rayhit.prim_id.copy().astype(np.intp)
I[rayhit.geom_id == embree.INVALID_GEOMETRY_ID] = -1
scene.release()
device.release()
return I
class TrimeshShapeModel:
def __init__(self, V, F, P=None, N=None, A=None):
self.dtype = V.dtype
self.V = V
self.F = F
# if N is None and A is None:
# N, A = get_surface_normals_and_face_areas(V, F)
# elif A is None:
# if N.shape[0] != F.shape[0]:
# raise Exception(
# 'must pass same number of surface normals as faces (got ' +
# '%d faces and %d normals' % (F.shape[0], N.shape[0])
# )
# A = get_face_areas(V, F)
# elif N is None:
# N = get_surface_normals(V, F)
# self.P = get_centroids(V, F)
# self.N = N
# self.A = A
# assert self.P.dtype == self.dtype
# assert self.N.dtype == self.dtype
# assert self.A.dtype == self.dtype
self._make_scene()
def _make_scene(self):
'''Set up an Embree scene. This function allocates some memory that
Embree manages, and loads vertices and index lists for the
faces. In Embree parlance, this function creates a "device",
which manages a "scene", which has one "geometry" in it, which
is our mesh.
'''
self.device = embree.Device()
geometry = self.device.make_geometry(embree.GeometryType.Triangle)
self.scene = self.device.make_scene()
self.scene.set_flags(4)
vertex_buffer = geometry.set_new_buffer(
embree.BufferType.Vertex, # buf_type
0, # slot
embree.Format.Float3, # fmt
3*np.dtype('float32').itemsize, # byte_stride
self.V.shape[0], # item_count
)
vertex_buffer[:] = self.V[:]
index_buffer = geometry.set_new_buffer(
embree.BufferType.Index, # buf_type
0, # slot
embree.Format.Uint3, # fmt
3*np.dtype('uint32').itemsize, # byte_stride,
self.F.shape[0]
)
index_buffer[:] = self.F[:]
geometry.commit()
self.scene.attach_geometry(geometry)
geometry.release()
self.scene.commit()
# This is the only variable we need to retain a reference to
# (I think)
def __reduce__(self):
return (self.__class__, (self.V, self.F))
# @property
# def num_faces(self):
# return self.P.shape[0]
# def check_vis_1_to_N(self, i, J, eps=None):
# if eps is None:
# eps = 1e3*np.finfo(np.float32).resolution
#
# D = self.P[J] - self.P[i]
# D /= np.sqrt(np.sum(D**2, axis=1)).reshape(D.shape[0], 1)
# P = self.P[i] + eps*D
#
# rayhit = embree.RayHit1M(len(J))
# context = embree.IntersectContext()
# rayhit.org[:] = P
# rayhit.dir[:] = D
# rayhit.tnear[:] = 0
# rayhit.tfar[:] = np.inf
# rayhit.flags[:] = 0
# rayhit.geom_id[:] = embree.INVALID_GEOMETRY_ID
#
# self.scene.intersect1M(context, rayhit)
#
# return np.logical_and(
# rayhit.geom_id != embree.INVALID_GEOMETRY_ID,
# rayhit.prim_id == J
# )
def intersect(self, origins, dirs, tnear_override=None):
m = origins.shape[0]
if dirs.shape[0] != m:
raise Exception('origins and dirs need the same number of rows')
rayhit = embree.RayHit1M(m)
context = embree.IntersectContext()
rayhit.org[:] = origins
rayhit.dir[:] = dirs
if not (tnear_override is None):
rayhit.tnear[:]=tnear_override[:]
else:
rayhit.tnear[:] = 0
rayhit.tfar[:] = np.inf
rayhit.flags[:] = 0
rayhit.geom_id[:] = embree.INVALID_GEOMETRY_ID
self.scene.intersect1M(context, rayhit)
I = rayhit.prim_id.copy().astype(np.intp)
I[rayhit.geom_id == embree.INVALID_GEOMETRY_ID] = -1
# self.scene.release()
# self.device.release()
return I
# def get_direct_irradiance(self, F0, dir_sun, eps=None):
# if eps is None:
# eps = 1e3*np.finfo(np.float32).resolution
#
# # Here, we use Embree directly to find the indices of triangles
# # which are directly illuminated (I_sun) or not (I_shadow).
# ray = embree.Ray1M(self.num_faces)
# ray.org[:] = self.P + eps*self.N
# ray.dir[:] = dir_sun
# ray.tnear[:] = 0
# ray.tfar[:] = np.inf
# ray.flags[:] = 0
# context = embree.IntersectContext()
# self.scene.occluded1M(context, ray)
#
# # Determine which rays escaped (i.e., can see the sun)
# I = np.isposinf(ray.tfar)
#
# # Compute the direct irradiance
# E = np.zeros(self.num_faces, dtype=self.dtype)
# E[I] = F0*np.maximum(0, self.N[I]@dir_sun)
#
# return E