-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path001_run_ML.py
66 lines (53 loc) · 2.43 KB
/
001_run_ML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from Utils import *
from Utils_parallel import *
SEED = 741
njob = 1
# exec(open("015_SPLITTING_DATA.py").read())
# exec(open("030_VARIABLES_SELECTION.py").read())
# exec(open("035_UNIVARIATE_VARIABLES_SELECTION.py").read())
nvars = np.arange(140, 252, 20) #np.concatenate( ([1], np.arange(10, 51, 10), np.arange(70, 140, 30)) )
methods = ['LR_ACCURACY', 'E_NET', 'INFORMATION_GAIN', 'LASSO', 'RIDGE', 'RANDOM_FOREST', 'GBM']
probs_to_check = np.arange(0.1, 0.91, 0.1)
DF = pd.DataFrame()
scheduled_model = 'running_model/'
create_dir( scheduled_model)
for method in methods:
for nvar in nvars:
predictors = extract_predictors(method, nvar, SEED)
eff_nvar = len(predictors)
print method, eff_nvar
try:
exec(open("041_TREE_BASED_MODELS.py").read())
DF.to_csv(scheduled_model + 'OK_TREE_BASED_MODELS' + method + '_' + str(nvar) + '.csv')
except:
DF.to_csv( scheduled_model + 'ERROR_TREE_BASED_' + method + '_' + str(nvar) + '.csv')
try:
exec(open("043_REGULARIZED_METHODS.py").read())
DF.to_csv(scheduled_model + 'OK_REGULARIZED_METHODS' + method + '_' + str(nvar) + '.csv')
except:
DF.to_csv( scheduled_model + 'ERROR_LASSO_' + method + '_' + str(nvar) + '.csv')
try:
exec(open("045_NAIVE_BAYES.py").read())
DF.to_csv(scheduled_model + 'OK_NAIVE_BAYES' + method + '_' + str(nvar) + '.csv')
except:
DF.to_csv( scheduled_model + 'ERROR_NAIVE_BAYES_' + method + '_' + str(nvar) + '.csv')
try:
exec(open("046_KNN.py").read())
DF.to_csv( scheduled_model + 'OK_KNN_' + method + '_' + str(nvar) + '.csv')
except:
DF.to_csv( scheduled_model + 'ERROR_' + method + '_' + str(nvar) + '.csv' )
try:
exec (open("042_SVM.py").read())
DF.to_csv(scheduled_model + 'OK_SVM' + method + '_' + str(nvar) + '.csv')
except:
DF.to_csv( scheduled_model + 'ERROR_SVM_' + method + '_' + str(nvar) + '.csv')
for method in methods:
for nvar in nvars:
predictors = extract_predictors(method, nvar, SEED)
eff_nvar = len(predictors)
print method, nvar
try:
exec(open("051_NEURAL_NETWORK.py").read())
DF.to_csv(scheduled_model + 'OK_NN_' + method + '_' + str(nvar) + '.csv')
except:
DF.to_csv( scheduled_model + 'ERROR_NN_' + method + '_' + str(nvar) + '.csv')