-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpr_gibbs_b4cleanup.m
270 lines (225 loc) · 9.86 KB
/
gpr_gibbs_b4cleanup.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
function [stats] = gp_gpr_gibbs(X, Y, opt)
% seed random numbers
RandStream.setGlobalStream(RandStream('mt19937ar','seed',sum(100*clock)));
% housekeeping parameters
write_interval = 50;%round(opt.nGibbsIter/10);
update_interval = 200;
% make sure y is a vector
y = Y(:); y(isnan(y)) = 0;
tic; % start timer
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Basic parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[N,D] = size(X);
% polynomial basis expansion for trend coefficients
Phi = zeros(size(X,1),size(X,2)*opt.DimPoly); colid = 1:size(X,2);
for d = 1:opt.DimPoly
Phi(:,colid) = X.^d; colid = colid + size(X,2);
end
DPhi = size(Phi,2);
% initialise top-level priors
al_prior = opt.PriorParam{1}; % ell
bl_prior = opt.PriorParam{2};
af_prior = opt.PriorParam{3}; % sf2
bf_prior = opt.PriorParam{4};
an_prior = opt.PriorParam{5}; % sn2
bn_prior = opt.PriorParam{6};
mu_beta_prior = opt.PriorParam{7}; % beta
S_beta_prior = opt.PriorParam{8}*eye(DPhi);
Prec_beta_prior = (1./opt.PriorParam{8})*eye(DPhi); % for convenience
% initial posterior values
Theta = opt.X0_Theta;
f = opt.X0_f;
if any(regexp(func2str(opt.CovFunc{1}),'ard'))
ell = Theta(1:D); parid = D;
else
ell = Theta(1); parid = 1;
end
sf2 = Theta(parid+1);
%sn2 = Theta(parid+2); % sn2 is the first variable sampled
beta = Theta(parid+3:end);
% compute initial covariance
if iscell(opt.CovFunc)
K = feval(opt.CovFunc{:}, [log(ell); log(0.5*sf2)], X);
else % old style
K = feval(opt.CovFunc,X,Theta);
end
% initial posterior for S
Prec_beta_post = Phi'*Phi + Prec_beta_prior;
% compute initial posterior for beta by setting to prior mean
mu_beta_post = mu_beta_prior*ones(DPhi,1); % = zeros(DimPoly,1)
% initialize posteriors
f_all = zeros(size(f,1),opt.nGibbsIter); fidx = 1;
alpha_all = zeros(size(f,1),opt.nGibbsIter); % saves time for regression tasks
Theta_all = zeros(size(Theta,1),opt.nGibbsIter);
% initialize stats
stats.iter = 1;
stats.opt = opt;
stats.prior_theta = opt.PriorParam;
stats.arate_cov = zeros(1,opt.nGibbsIter);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin Gibbs Sampling Block
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
acc_cov_all = 0; gidx = 1:50; lpcov = []; lplik = [];
for g = 1:opt.nGibbsIter
%g
% display output
if mod(g,update_interval) == 0
arate_cov = acc_cov_all / update_interval;
disp(['Gibbs iter: ',num2str(g),' arate(cov)=',num2str(arate_cov,'%2.2f')]);
acc_cov_all = 0;
% update stats
stats.iter = g;
stats.arate_cov(gidx) = arate_cov;
gidx = gidx + update_interval;
end
% save output
if mod(g,write_interval) == 0 && opt.WriteInterim && ...
isfield(opt,'OutputFilename') && ...
~isempty(opt.OutputFilename)
fprintf('Writing output ... ');
save([opt.OutputFilename,'stats'],'stats');
save([opt.OutputFilename,'f_all'],'f_all','-v7.3');
save([opt.OutputFilename,'alpha_all'],'alpha_all','-v7.3');
save([opt.OutputFilename,'Theta_all'],'Theta_all','-v7.3');
fprintf('done.\n');
plot(Theta_all'); pause(0.1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sample noise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%bn = bn_prior + 0.5*sum((y - f - Phi*beta).^2)
%bn = bn_prior + 0.5*(y'*y -2*(Phi*beta+f)'*y + (Phi*beta+f)'*(Phi*beta+f));
% from bishop:
an = an_prior + 0.5*N;
bn = bn_prior + 0.5*((y-f)'*(y-f) + mu_beta_post'/Prec_beta_post*mu_beta_post);
% Note: set f=0 in the line above to get BLR
% Draw new sn2 from inverse gamma
sn2 = 1./gamrnd(an,1/bn);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sample f
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute & solve cholesky (alpha = inv(C)*y);
L_Ky = chol(K+sn2*eye(N))';
alpha = solve_chol(L_Ky',y-Phi*beta);
%muf_post = muf + Sr*alpha;
mu_f_post = K*alpha; % + muf
v = L_Ky\K;
S_f_post = K - v'*v;
L_Sf = chol(S_f_post)';
f = mu_f_post + L_Sf*randn(N,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sample beta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute posterior using the matrix inversion lemma
%%S_beta_post = inv(Phi'*Phi/sn2 + Prec_beta_prior);
%%mu_beta_post = (Phi'*Phi/sn2 + Prec_beta_prior)\Phi'*(y-f); %S*InvKy*y;
Prec_beta_post = Phi'*Phi + Prec_beta_prior;
mu_beta_post = Prec_beta_post\Phi'*(y-f); %S*InvKy*y;
%S_beta_post = inv((Phi'*Phi + Prec_beta_prior)/sn2 + 1e-5*eye(DPhi));
%mu_beta_post = ((Phi'*Phi + Prec_beta_prior)/sn2+ 1e-5*eye(DPhi))\Phi'*(y-f); %S*InvKy*y;
% sample from posterior
L_Sb = chol(inv(Prec_beta_post)*sn2)';
beta = mu_beta_post + L_Sb*randn(DPhi,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sample covariance scale
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
af = af_prior + 0.5*N;
%bf = bf_prior + 0.5*f'/K*f;
%%bf = bf_prior + 0.5*f'*solve_chol(K',f);
C = (K+sn2*eye(N)+sn2*Phi*S_beta_prior*Phi')/sf2;
bf = bf_prior + 0.5*f'/C*f;
% Draw new sn2 from inverse gamma & update parameter vector
sf2 = 1./gamrnd(af,1/bf);
if iscell(opt.CovFunc)
K = feval(opt.CovFunc{:}, [log(ell); log(0.5*sf2)], X);
else % old style
K = feval(opt.CovFunc,X,Theta);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% sample lengthscale parameter(s)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%nu = (L_Ky\f);
%f_new = L_Kt_new*nu;
logell = log(ell);
% make a step in theta
logell_new = logell + opt.mh.StepSize*(eye*randn(length(logell),1));
% compute covariance
if iscell(opt.CovFunc)
K_new = feval(opt.CovFunc{:}, [logell_new; log(0.5*sf2)], X);
else % old style
K_new = feval(opt.CovFunc, X, [logell_new; log(0.5*sf2)]);
end
%L_Ky_new = chol(K_new+sn2*eye(N))';
%alpha_new = solve_chol(L_Ky_new',y-Phi*beta);
% compute (old) log marginal likelihood using R/W eq 2.44 (p 29)
% iKyX = solve_chol(L_Ky',Phi);
% A = Prec_beta_prior + Phi'*iKyX;
% C = iKyX/A*iKyX';
% LogLik = -0.5*y'*alpha + 0.5*y'*C*y - sum(log(diag(L_Ky))) ...
% -0.5*log(det(S_beta_prior)) -0.5*log(det(A)) -0.5*N*log(2*pi);
Csf2 = K+sn2*eye(N)+sn2*Phi*S_beta_prior*Phi';
L_Csf2 = chol(Csf2)';
LogLik = y'*solve_chol(L_Csf2',y) - sum(log(diag(L_Csf2))) - 0.5*log(2*pi);
% compute (new) log marginal likelihood
% iKyX_new = solve_chol(L_Ky_new',Phi);
% A_new = Prec_beta_prior + Phi'*iKyX_new;
% C_new = iKyX_new/A_new*iKyX_new';
% LogLik_new = -0.5*y'*alpha_new + 0.5*y'*C_new*y - sum(log(diag(L_Ky_new))) ...
% -0.5*log(det(S_beta_prior)) -0.5*log(det(A_new)) -0.5*N*log(2*pi);
Csf2_new = K_new+sn2*eye(N)+sn2*Phi*S_beta_prior*Phi';
L_Csf2_new = chol(Csf2_new)';
LogLik_new = y'*solve_chol(L_Csf2_new',y) - sum(log(diag(L_Csf2_new))) - 0.5*log(2*pi);
% compute priors for new and old paramters
LP_cov = zeros(size(logell,1)+2,1);
LP_cov_new = zeros(size(logell,1)+2,1);
const = al_prior*log(bl_prior) - gammaln(al_prior);
% lengthscale parameters
for i = 1:length(LP_cov)-2
LP_cov(i) = const + (al_prior-1)*logell(i) - bl_prior*exp(logell(i));
LP_cov_new(i) = const + (al_prior-1)*logell_new(i) - bl_prior*exp(logell_new(i));
end
% signal variance (gamma)
% const = af_prior*log(bf_prior) - gammaln(af_prior);
% LP_cov(i+1) = const + (af_prior-1)*lh(i+1) - bf_prior*exp(lh(i+1));
% LP_cov_new(i+1) = const + (af_prior-1)*lh(i+1) - bf_prior*exp(lh(i+1));
% signal variance (inverse gamma)
const = af_prior*log(bf_prior) - gammaln(af_prior);
LP_cov(i+1) = const - (af_prior+1)*log(sf2) - bf_prior/sf2;
LP_cov_new(i+1) = const - (af_prior+1)*log(sf2) - bf_prior/sf2;
LP_cov = sum(LP_cov);
LP_cov_new = sum(LP_cov_new);
%lpcov = [lpcov LP_cov];
%lpcov = [lplik LogLik];
Ratio = (LogLik_new + LP_cov_new) - (LogLik + LP_cov);
if Ratio > 0 || (Ratio > log(rand)) % accept
% update theta
fprintf('iteration %d: accept (acc rate = %2.2f)\n',g,(acc_cov_all+1)/mod(g,update_interval))
ell = exp(logell_new);
%sf2 = sf2_new; %exp(2*lh_new(end));
%L_Ky = L_Ky_new; % not needed as it is recomputed anyway
K = K_new;
%alpha = alpha_new;
acc_cov = 1;
else % reject
fprintf('iteration %d: reject (acc rate = %2.2f)\n',g,acc_cov_all/mod(g,update_interval))
acc_cov = 0;
end
acc_cov_all = acc_cov_all + acc_cov;
Theta = [ell; sf2; sn2; beta];
% save posteriors and kernel weights for regression
Theta_all(:,g) = Theta;
f_all(:,fidx) = f;
alpha_all(:,fidx) = alpha;
fidx = fidx + 1;
end
stats.time_taken = toc;
stats.arate_cov_mean = mean(stats.arate_cov);
disp(['Mean acceptance rate (cov): ',num2str(stats.arate_cov_mean,'%2.2f')]);
if isfield(opt,'OutputFilename') && ~isempty(opt.OutputFilename)
save([opt.OutputFilename,'Theta_all'],'Theta_all','-v7.3');
save([opt.OutputFilename,'f_all'],'f_all','-v7.3');
save([opt.OutputFilename,'alpha_all'],'alpha_all','-v7.3');
save([opt.OutputFilename,'stats'],'stats','-v7.3');
end
end