-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmiRnormalize.m
274 lines (248 loc) · 7.94 KB
/
miRnormalize.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
function [ newMirs ] = miRnormalize
% miR = xlsread('healthy_miRlog2.xlsx');
%miR = xlsread('healthy_mircount.xlsx');
% convert miR to log2 and save to xls
%data1 = xlsread('healthy_mircount_full947noLabel.xlsx');
data1 = xlsread('lung_oncomirsQuaNor_743H2.xlsx');
aux=0;
for i= 1:13
aux = aux + var(data1(i,:));
end
aux = aux/13
aux1=0;
for i =14:28
aux1 = aux1 + var(data1(i,:));
end
aux1 = aux1/15
%-------panel 13 markers common between stage iv lung cancer
miR891a = data1(719,:)
PmiR891a = miR891a(1:13)
PmiR891a(14) = NaN
PmiR891a(15) = NaN
HmiR891a = miR891a(14:28)
p891a = ranksum(PmiR891a,HmiR891a)
figure, boxplot([PmiR891a',HmiR891a'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd891a = sprintf('p = %.5f', p891a);
ylabel('miR-891a-5p')
title(lgd891a)
miR196a = data1(194,:)
PmiR196a = miR196a(1:13)
PmiR196a(14) = NaN
PmiR196a(15) = NaN
HmiR196a = miR196a(14:28)
p196a = ranksum(PmiR196a,HmiR196a)
figure, boxplot([PmiR196a',HmiR196a'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd196a = sprintf('p = %.5f', p196a);
ylabel('miR-196a-5p')
title(lgd196a)
miR141 = data1(114,:)
PmiR141 = miR141(1:13)
PmiR141(14) = NaN
PmiR141(15) = NaN
HmiR141 = miR141(14:28)
p141 = ranksum(PmiR141,HmiR141)
figure, boxplot([PmiR141',HmiR141'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd141 = sprintf('p = %.5f', p141);
ylabel('miR-141-3p')
title(lgd141)
miR577 = data1(590,:)
PmiR577 = miR577(1:13)
PmiR577(14) = NaN
PmiR577(15) = NaN
HmiR577 = miR577(14:28)
p577 = ranksum(PmiR577,HmiR577)
figure, boxplot([PmiR577',HmiR577'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd577 = sprintf('p = %.5f', p577);
ylabel('miR-577')
title(lgd577)
miR200a = data1(205,:)
PmiR200a = miR200a(1:13)
PmiR200a(14) = NaN
PmiR200a(15) = NaN
HmiR200a = miR200a(14:28)
p200a = ranksum(PmiR200a,HmiR200a)
figure, boxplot([PmiR200a',HmiR200a'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd200a = sprintf('p = %.5f', p200a);
ylabel('miR-200a-5p')
title(lgd200a)
miR1246 = data1(44,:)
PmiR1246 = miR150(1:13)
PmiR1246(14) = NaN
PmiR1246(15) = NaN
HmiR1246 = miR1246(14:28)
p1246 = ranksum(PmiR150,HmiR150)
figure, boxplot([PmiR1246',HmiR1246'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd1246 = sprintf('p = %.5f', p1246);
ylabel('miR-1246')
title(lgd1246)
miR150 = data1(135,:)
PmiR150 = miR150(1:13)
PmiR150(14) = NaN
PmiR150(15) = NaN
HmiR150 = miR150 (14:28)
p150 = ranksum(PmiR150,HmiR150)
figure, boxplot([PmiR150',HmiR150'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd150 = sprintf('p = %.5f', p150);
ylabel('miR-150-5p')
title(lgd150)
miR320 = data1(322,:)
PmiR320 = miR320(1:13)
PmiR320(14) = NaN
PmiR320(15) = NaN
HmiR320 = miR320 (14:28)
p320 = ranksum(PmiR320,HmiR320)
figure, boxplot([PmiR320',HmiR320'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd320 = sprintf('p = %.5f', p320);
ylabel('miR-320c')
title(lgd320)
miR584 = data1(592,:)
PmiR584 = miR584(1:13)
PmiR584(14) = NaN
PmiR584(15) = NaN
HmiR584 = miR584 (14:28)
p584 = ranksum(PmiR584,HmiR584)
figure, boxplot([PmiR584',HmiR584'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd584 = sprintf('p = %.5f', p584);
ylabel('miR-584-5p')
title(lgd584)
miR615 = data1(630,:)
PmiR615 = miR615(1:13)
PmiR615(14) = NaN
PmiR615(15) = NaN
HmiR615 = miR615 (14:28)
p615 = ranksum(PmiR615,HmiR615)
figure, boxplot([PmiR615',HmiR615'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd615 = sprintf('p = %.5f', p615);
ylabel('miR-615-3p')
title(lgd615)
miR744 = data1(694,:)
PmiR744 = miR744(1:13)
PmiR744(14) = NaN
PmiR744(15) = NaN
HmiR744 = miR744 (14:28)
p744 = ranksum(PmiR744,HmiR744)
figure, boxplot([PmiR744',HmiR744'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd744 = sprintf('p = %.5f', p744);
ylabel('miR-744-5p')
title(lgd744)
%-------panel eight markers healhty vs stage iv lung cancer
miR16 = data1(150,:)
PmiR16 = miR16(1:13)
PmiR16(14) = NaN
PmiR16(15) = NaN
HmiR16 = miR16 (14:28)
p16 = ranksum(PmiR16,HmiR16)
figure, boxplot([PmiR16',HmiR16'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd16 = sprintf('p = %.5f', p16);
ylabel('miR-16-5p')
title(lgd16)
miR25 = data1(254,:)
PmiR25 = miR25(1:13)
PmiR25(14) = NaN
PmiR25(15) = NaN
HmiR25 = miR25 (14:28)
p25 = ranksum(PmiR25,HmiR25)
figure, boxplot([PmiR25',HmiR25'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd25 = sprintf('p = %.5f', p25);
ylabel('miR-25-3p')
title(lgd25)
miR122 = data1(35,:)
PmiR122 = miR122(1:13)
PmiR122(14) = NaN
PmiR122(15) = NaN
HmiR122 = miR122 (14:28)
p122 = ranksum(PmiR122,HmiR122)
figure, boxplot([PmiR122',HmiR122'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd122 = sprintf('p = %.5f', p122);
ylabel('miR-122-5p')
title(lgd122)
figure,bar(PmiR122')
figure,bar (HmiR122')
figure,hist(PmiR122)
figure,hist(HmiR122)
miR143 = data1(117,:)
PmiR143 = miR143(1:13)
PmiR143(14) = NaN
PmiR143(15) = NaN
HmiR143 = miR143 (14:28)
p143 = ranksum(PmiR143,HmiR143)
figure, boxplot([PmiR143',HmiR143'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd143 = sprintf('p = %.5f', p143);
ylabel('miR-143-3p')
title(lgd143)
miR200 = data1(206,:)
PmiR200 = miR200(1:13)
PmiR200(14) = NaN
PmiR200(15) = NaN
HmiR200 = miR200 (14:28)
p200 = ranksum(PmiR200,HmiR200)
figure, boxplot([PmiR200',HmiR200'],'Notch','off','Labels',{'Patient','Control'},'Whisker',1,'PlotStyle','compact')
ylabel('miR-200b-5p')
lgd200 = sprintf('p = %.5f', p200);
title(lgd200)
miR223 = data1(240,:)
PmiR223 = miR223(1:13)
PmiR223(14) = NaN
PmiR223(15) = NaN
HmiR223 = miR223 (14:28)
p223 = ranksum(PmiR223,HmiR223)
figure, boxplot([PmiR223',HmiR223'],'Notch','off','Labels',{'Patient','Control'},'Whisker',1,'PlotStyle','compact')
ylabel('miR-233-5p')
lgd223 = sprintf('p = %.5f', p223);
title(lgd223)
miR486 = data1(506,:)
PmiR486 = miR486(1:13)
PmiR486(14) = NaN
PmiR486(15) = NaN
HmiR486 = miR486 (14:28)
p486 = ranksum(PmiR486,HmiR486)
figure, boxplot([PmiR486',HmiR486'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd486 = sprintf('p = %.5f', p486);
ylabel('miR-486-5p')
title(lgd486)
miR708 = data1(690,:)
PmiR708 = miR708(1:13)
PmiR708(14) = NaN
PmiR708(15) = NaN
HmiR708 = miR708 (14:28)
p708 = ranksum(PmiR708,HmiR708)
figure, boxplot([PmiR708',HmiR708'],'Notch','off','Labels',{'Patient ','Control'},'Whisker',1,'PlotStyle','compact')
lgd708 = sprintf('p = %.5f', p708);
ylabel('miR-708-5p')
title(lgd708)
% data1 = xlsread('lung_oncomirs_full947noLabelH3.xlsx');
% data1(isnan(data1))=0;
% xlswrite('lung_oncomirs_full947noLabelnoZeroH3.xlsx',data1);
%miRlog = log2(miR);
%aux = find(miRlog == -Inf);
%miRlog(aux)=0;
%xlswrite('healthy_miRlog2.xlsx',miRlog);
%QUANTILE NORMALIZATION BY MIRS (ROWS/HORIZONTAL)
miRm = [];
for i = 1:223
aux = median(miR(i,:));
for j = 1:45
miRm(i,j) = miR(i,j) - aux;
end
end
xlswrite('healthy_miRmedNor.xlsx',miRm);
%LOESS NORMALIZATION
% miR1 = miR(:);%aux = miR';%miR2 = aux(:);
% y=[1 2 3];
% z= [];y1 = [];
% for i = 1:223
% z(i) =mean (miR(i,:));% this has to be computed over 15 people but for every time point %y1 = [y1; y'];
% end
% z1 = [];
% for i = 1:45
% z1 = [z1;z'];
% end
% for i = 1:3345
% y1 = [y1; y'];
% end
% f = fit([miR1 y1],z1,'lowess')%load franke
% plot(f,[miR1 y1],z1,'Exclude',out)
% xlabel( 'miR [abundance]' );
% ylabel( 'time points 1 2 3' );
% zlabel( 'mean miR per every time point over the 15 people' );
% miR