-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNC_for_Social_Network_Data_collection.html
1137 lines (1019 loc) · 53.5 KB
/
NC_for_Social_Network_Data_collection.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="NC_for_Social_Network_Data_collection_files/libs/clipboard/clipboard.min.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/quarto-html/tabby.min.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/quarto-html/popper.min.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="NC_for_Social_Network_Data_collection_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="NC_for_Social_Network_Data_collection_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="NC_for_Social_Network_Data_collection_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="NC_for_Social_Network_Data_collection_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.4.550">
<meta name="author" content="Ana Bravo">
<meta name="dcterms.date" content="2024-03-27">
<title>Data collection Instruments for Egocentric Networks</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="NC_for_Social_Network_Data_collection_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="NC_for_Social_Network_Data_collection_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
</style>
<link rel="stylesheet" href="NC_for_Social_Network_Data_collection_files/libs/revealjs/dist/theme/quarto.css">
<link rel="stylesheet" href="light.css">
<link href="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
padding-bottom: 0.5rem;
margin-bottom: 0;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
overflow-y: auto;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Data collection Instruments for Egocentric Networks</h1>
<p class="subtitle">EPH 647: Community Based Participatory Research and Social Network Analysis</p>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
Ana Bravo
</div>
</div>
</div>
<p class="date">2024-03-27</p>
</section>
<section id="objectives" class="slide level2">
<h2>Objectives</h2>
<ul>
<li><p>Understand Ego-centric data and the different data types.</p></li>
<li><p>To understand the different major components of ego-centric (personal network) data.</p></li>
<li><p>To understand the different types of data collection instruments (focus Network Canvas)</p></li>
<li><p>Understand the major features and components of Network Canvas.</p></li>
<li><p>Live demonstration of a Network Canvas Social Network protocol.</p></li>
</ul>
</section>
<section>
<section id="ego-centric-data" class="title-slide slide level1 center">
<h1>Ego-centric Data 🙆♂️</h1>
</section>
<section id="ego-centric-data-types" class="slide level2">
<h2>Ego-centric Data Types</h2>
<ul>
<li>Ego-centric <em>(also called personal network)</em> data, typically has three main data types:</li>
</ul>
<div class="panel-tabset">
<ul id="tabset-1" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-1-1">Ego-level data</a></li><li><a href="#tabset-1-2">Alter-level data</a></li><li><a href="#tabset-1-3">Alter-alter data</a></li></ul>
<div class="tab-content">
<div id="tabset-1-1">
<p>Data about the respondent <em>(called ego)</em>. which consists of each row as the participant/ego response, and each column represents a variable or characteristic of the ego (e.g., egos age, BMI, smoking status, etc.)</p>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="ego_data.PNG" class="quarto-figure quarto-figure-center" width="552"></p>
</figure>
</div>
</div>
<div id="tabset-1-2">
<p>Which consist of the egos nominated <em>alters</em> (e.g, peers, friends, etc.) characteristics (e.g., alter age, ethnicity, etc.) and <em>ego-alter dynamics</em> (e.g., closeness to alter, frequency of meeting, shared a meal together etc.)</p>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="alter_data.PNG" class="quarto-figure quarto-figure-center" width="540"></p>
</figure>
</div>
</div>
<div id="tabset-1-3">
<p>Data that includes the alter-alter ties as reported by ego. This is also called an <em>“edge list”</em> or can be described as an adjacency matrix. For example:</p>
<ul>
<li><p>alter 1 and alter 2 know each other.</p></li>
<li><p>alter 1 and alter 2 meet when ego is not there.</p></li>
<li><p>alter 1 and alter 2 have shared a meal together.</p></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="alter_alter_data.PNG" class="quarto-figure quarto-figure-center" width="259"></p>
</figure>
</div>
</div>
</div>
</div>
</section></section>
<section id="in-ego-centric-also-called-personal-networks-data-alters-can-only-belong-to-one-ego-and-alter-alter-ties-only-exist-between-alters-that-were-nominated-by-the-same-ego.-in-other-words-in-this-type-of-analysis-there-is-no-overlap-between-the-different-networks-of-different-egos." class="title-slide slide level1 center" style="font-size:15px">
<h1><em>In ego-centric (also called personal networks) data, alters can only belong to one ego, and alter-alter ties only exist between alters that were nominated by the same ego. In other words, in this type of analysis, there is no overlap between the different networks of different egos.</em></h1>
<img data-src="NC_for_Social_Network_Data_collection_files/figure-revealjs/unnamed-chunk-1-1.png" width="960" class="r-stretch"></section>
<section>
<section id="data-collection-methods" class="title-slide slide level1 center">
<h1>Data Collection Methods 👩💻</h1>
</section>
<section id="data-collection-software" class="slide level2">
<h2>Data Collection Software</h2>
<ul>
<li><p>Social network analysis (SNA) is a growing field and there are many different data collection software, which you can check out a list of different data collect software <a href="https://raffaelevacca.github.io/Open-social-network-surveys/">here.</a></p></li>
<li><p>However, for today we will focus on <a href="https://networkcanvas.com/">Network Canvas.</a></p></li>
</ul>
<img data-src="network_canvas.PNG" class="quarto-figure quarto-figure-center r-stretch"></section>
<section id="what-is-network-canvas" class="slide level2">
<h2>What is Network Canvas</h2>
<p>Network Canvas (NC) is a data collection software, specifically tailored to handle <em>social network data</em>. It has different capability to support the major components of personal network projects as well as the flexibility to adapt to different study designs.</p>
<ul>
<li><p>It is free and open source.</p></li>
<li><p>It is intuitive and user friendly.</p></li>
<li><p>Their development community is open to feedback and suggestions.</p>
<ul>
<li>you also can communicate with their development team through their <a href="https://community.networkcanvas.com/">community forums.</a></li>
</ul></li>
<li><p>It works well with major data wrangling software, like Python and R.</p></li>
</ul>
</section>
<section id="major-components-of-network-canvas" class="slide level2">
<h2>Major Components of Network Canvas</h2>
<p>Network Canvas has three main programs:</p>
<div class="panel-tabset">
<ul id="tabset-2" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-2-1">Architect</a></li><li><a href="#tabset-2-2">Interviewer</a></li><li><a href="#tabset-2-3">Server</a></li></ul>
<div class="tab-content">
<div id="tabset-2-1">
<p>which is the software that allows primary investigators and researchers the ability to <em>build</em> their Social Network protocol. (e.g., this is where the researcher can define the different <em>data types</em> and the different questions)</p>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="architect_trimed.gif" class="quarto-figure quarto-figure-center" width="503"></p>
</figure>
</div>
</div>
<div id="tabset-2-2">
<p>which is the software that helps <em>deploy and run</em> the network canvas interview. (e.g., This is where the research assistant and the participant complete the questionnaires)</p>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="interviewer_trimmed_2.gif" class="quarto-figure quarto-figure-center" width="544"></p>
</figure>
</div>
</div>
<div id="tabset-2-3">
<p>The central hub software to keep multiple network canvas protocols updated if you are running a major, multi-site study.</p>
<ul>
<li><p>The Network Canvas (NC) team is expecting to launch a <em>“studio”</em> version, to be able to support for longitudinal project designs in about 2-3 years, so this software workflow may change.</p></li>
<li><p>For this lesson, we will not be talking about server today, as the typical way for social network researchers to <em>use</em> Network Canvas is through the architect and interviewer software.</p></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="architect_interviewer_workflow.png" class="quarto-figure quarto-figure-center" width="460"></p>
</figure>
</div>
</div>
</div>
</div>
</section></section>
<section>
<section id="personal-network-data-collection-fundamentals" class="title-slide slide level1 center">
<h1>Personal Network Data Collection Fundamentals 🧑🤝🧑</h1>
</section>
<section id="components-of-personal-network-research" class="slide level2">
<h2>Components of Personal Network Research</h2>
<div style="font-size:29px">
<ul>
<li><p>When collecting personal network data, there is a few fundamental principles that researchers are interested in collecting when running SN projects:</p></li>
<li><p>The way that network canvas is structured, it tried to capture social network data in its most <em>fundamental</em> way, by capturing <strong>nodes</strong> and <strong>edge</strong> attributes. To collect this type of data, there are <em>generally</em> 4 main components needed:</p></li>
</ul>
</div>
<div class="panel-tabset">
<ul id="tabset-3" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-3-1">Ego Form</a></li><li><a href="#tabset-3-2">Names</a></li><li><a href="#tabset-3-3">Alter-ego</a></li><li><a href="#tabset-3-4">Socio-gram</a></li></ul>
<div class="tab-content">
<div id="tabset-3-1">
<ul>
<li><p>A survey that can collect ego characteristics, such as, age, BMI, smoking status, etc.)</p></li>
<li><p>This type of data can be collected via NC, but it can also be collected through other survey software. My favorite, in my opinion the golden standard, is [REDCap.](<a href="https://www.project-redcap.org/" class="uri">https://www.project-redcap.org/</a>)</p>
<ul>
<li><p>Keep in mind that REDCap does <strong>not</strong> really support network data like NC does, but it is great when you’re interested in collecting ego data.</p>
<ul>
<li>for example: mental health scales like MACVS, PTSD scales, demographic information.</li>
</ul></li>
</ul></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="ego_form_trimmed.gif" class="quarto-figure quarto-figure-center" width="545"></p>
</figure>
</div>
</div>
<div id="tabset-3-2">
<p>also called <em>Name Generator</em>:</p>
<ul>
<li><p>NC ability to produce alters, that the ego can nominate in their personal network.</p></li>
<li><p>This allows for building out the personal networks. There are different name generator form types (depending on your data needs), such as quick add per network, quick add per alter, using roasters for recall etc.)</p>
<ul>
<li><em>For example: “Think about the people you know: Who are the people in which you discuss personal matters with? List up to 13 individuals.”</em></li>
</ul></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="name_generator_trimmed.gif" class="quarto-figure quarto-figure-center" width="551"></p>
</figure>
</div>
</div>
<div id="tabset-3-3">
<p>Also called <em>Alter Ego Attributes</em>:</p>
<ul>
<li><p>NC ability to capture alter-ego <em>dynamics.</em> (e.g., closeness, frequency of contact, etc.)</p></li>
<li><p>This is also where the researcher has the ability to capture ordinal categorical type of data. (e.g., how close is the ego to the alter? Very close, somewhat close, not close at all)</p></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="alter_ego_trimmed.gif" class="quarto-figure quarto-figure-center" width="545"></p>
</figure>
</div>
</div>
<div id="tabset-3-4">
<ul>
<li><p>This allows for the participant and researcher, to describe and <em>build</em> the <em>layout</em> of their personal networks.</p></li>
<li><p>NC allows for different types alter-alter tie connections.</p>
<ul>
<li><p>For example, the tie between two alters represents that the alters “know” each other, or “hang out” together when the ego is not there, or “have fought” with each other.</p></li>
<li><p>A <em>sociogram</em> is one type of method to building personal networks, but there are other types that are supported by network canvas, such as dyad-census (which goes through every possible dyad connection to build the ties)</p>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="socio_gram_connection.gif" class="quarto-figure quarto-figure-center" width="522"></p>
</figure>
</div></li>
</ul></li>
</ul>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="dyad_census.png" class="quarto-figure quarto-figure-center" width="512"></p>
</figure>
</div>
</div>
</div>
</div>
</section></section>
<section>
<section id="possible-research-questions" class="title-slide slide level1 center">
<h1>Possible Research Questions 👨🔬</h1>
</section>
<section id="questions-to-consider-when-building-a-protocol" class="slide level2">
<h2>Questions to consider when building a protocol</h2>
<ul>
<li><p>This largely depends on your research of interest; however, you can collect different alter attributes, such as, egos perception of their alters age, emotional closeness to alter, etc.</p></li>
<li><p>NC is very flexible and can <em>almost</em> support any type of question of interest.</p></li>
<li><p>Additionally, when building a network protocol, there needs to be some forethought about the <em>type</em> of data you might want to collect. For example:</p>
<ul>
<li><p>What are some of the data types you are expecting to collect? (e.g., ordinal, categorical, text)</p></li>
<li><p>What <em>input controls</em> (more on that later) would be best to use to visualize the protocol?</p>
<ul>
<li><p>You can ask questions like:</p>
<ul>
<li><p>contact frequency</p></li>
<li><p>perceived age</p></li>
<li><p>disclosure of HIV status</p></li>
<li><p>likelihood to talk about PrEP in the next 6 months</p></li>
</ul></li>
</ul></li>
</ul></li>
</ul>
</section>
<section id="input-control" class="slide level2">
<h2>Input control</h2>
<p><em>Input control</em> is the ability to modify the way in which the data is presented and how it will collected.</p>
<ul>
<li>For example, you can use a calendar type input control for age, or a text field for name.</li>
</ul>
<img data-src="input_control.png" class="quarto-figure quarto-figure-center r-stretch" width="570"></section>
<section id="variable-types" class="slide level2">
<h2>Variable Types</h2>
<ul>
<li><p>When collecting data, really in any human subject research, considering the type of data you are collecting is important.</p></li>
<li><p>Network Canvas has support for many types of variables:</p>
<ul>
<li><strong>Text</strong> Basic short text string,</li>
<li><strong>Number</strong> Basic whole number (integer),</li>
<li><strong>Ordinal</strong> Ordered categorical data, where each value is described by a label and a value. Only supports single values,</li>
<li><strong>Categorical</strong> Unordered categorical data where each value is described by a label and a value. Supports multiple values.</li>
<li><strong>Boolean</strong> True or False values,</li>
<li><strong>Layout</strong> X/Y coordinate values, normalized between 0 and 1 in each axis.</li>
<li><strong>DateTime</strong> Date variable capable of storing resolution down to the day.</li>
<li><strong>Scalar</strong> A continuous floating point number between 0 and 1</li>
</ul></li>
</ul>
</section>
<section id="edge-types" class="slide level2">
<h2>Edge Types</h2>
<ul>
<li><p>In personal network research, edges describe the relationship between alters.</p></li>
<li><p>Network Canvas supports different edge types, which can be used to capture different types of relationships between alters.</p></li>
</ul>
<img data-src="dif_edge_types.PNG" class="quarto-figure quarto-figure-center r-stretch"></section></section>
<section>
<section id="recommended-social-network-project-building-process" class="title-slide slide level1 center">
<h1>Recommended Social Network Project Building Process 🏗</h1>
</section>
<section id="recommendations-for-creating-a-protocol" class="slide level2">
<h2>Recommendations for creating a protocol</h2>
<p>Typical creation of a network canvas protocol is:</p>
<ul>
<li>create a Stage based on whether you are collecting Ego, Node, or Edge data.</li>
<li>Include a stage name (e.g., Ego Form, Name Generator, etc.)</li>
<li>Create a name generator to collect alter data.</li>
<li>Create variables.</li>
<li>Add a prompt (or a script) for that variable.</li>
<li>Select an input control (calendar, text field, etc.)</li>
</ul>
<p>You can check out the Network Canvas recommended protocol building workflow <a href="https://documentation.networkcanvas.com/tutorials/building-a-protocol/">here.</a></p>
</section>
<section id="burden-reduction" class="slide level2">
<h2>Burden Reduction</h2>
<ul>
<li><p>In all human subject research (HSR), especially in epidemiological designs with complicated protocols, there’s always a give-and-take regarding burden level.</p></li>
<li><p>This is something to always keep in mind when conducting HSR, and therefore important to implement tips in any protocol workflow.</p></li>
<li><p>Tactics to reduce protocol burden includes skip logic:</p></li>
</ul>
<div class="column" style="width:100%;">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="skip_logic.PNG" class="quarto-figure quarto-figure-center" width="700"></p>
</figure>
</div>
</div>
</section>
<section id="general-protocol-process-workflow" class="slide level2">
<h2>General Protocol Process Workflow 🔄</h2>
<p>Generally, when running the protocol with a potential participant, the process would look something like this:</p>
<div class="column" style="width:100%;">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="NC_functionality_example.gif" class="quarto-figure quarto-figure-center" width="692"></p>
<figcaption>This short demo shows the general workflow characteristics discussed today on how to collect social network data that includes: name generator, dyadic dynamic questionnaire, (closeness frequency of meeting), and the ability to build alter-alter ties, or the sociograms.</figcaption>
</figure>
</div>
</div>
</section>
<section id="resources" class="slide level2">
<h2>Resources</h2>
<ul>
<li>There are many great resources for collecting sound protocol measures using NC, one of them being directly from the NC team:
<ul>
<li><a href="https://www.youtube.com/watch?v=3EZAnB9_-cA">Conducting Personal Network Research with Network Canvas</a></li>
<li><a href="https://documentation.networkcanvas.com/tutorials/working-with-data/">Working with Network Canvas data in R</a></li>
</ul></li>
<li>And others resource from Social network scientists:
<ul>
<li><a href="https://raffaelevacca.github.io/egocentric-r-book/index.html">Ego Centric Network Analysis with R</a></li>
<li><a href="http://talks.schochastics.net/netVizR/slides.html#1">Network Visualization using R</a></li>
</ul></li>
</ul>
</section>
<section id="a-network-canvas-protocol-example" class="slide level2">
<h2>A Network Canvas Protocol Example</h2>
<p><em>A two mode approach</em></p>
<div style="font-size:30px">
<ul>
<li><p>We are going to be looking at a Network Canvas Protocol example that was built for the <code>LatiNET</code> study.</p></li>
<li><p><code>LatiNET</code> is a multi-level study using a social network approach to examine how COVID-19 misinformation and conspiracy theories impact Latino vaccine hesitancy across 5 domains:</p>
<ul>
<li><p>Friends</p></li>
<li><p>Family</p></li>
<li><p>Work</p></li>
<li><p>Health Services</p></li>
<li><p>Influences</p></li>
</ul></li>
<li><p><code>LatiNET</code> covers the social network project fundamentals, like name generators, and questionnaires regarding the relationships with nominated alters.</p>
<ul>
<li><p>Personal network data typically measures data at the “micro-level” (e.g., between dyads), and with these relationships, we are able to make inferences about about these relationships at the “macro-level”</p></li>
<li><p>A <em>two-mode</em> approach, describes ties between two nodes at different levels of analysis. In other words, affiliation or relationship to structures. So nodes/egos affiliation to their macro structure (in the <code>LatiNET</code> case, health services, influences (e.g., political, social etc.) and community channels.</p></li>
<li><p>A two mode approach helps researchers understand the macro-micro dynamics and help control for societal structures that impact observed relationships, like structural racism.</p>
<ul>
<li>in the <code>LatiNET</code> study, a two-mode approach helps us understand how egos affiliation or relationship with different media outlets may impact their relationship with vaccines.</li>
</ul></li>
</ul></li>
<li><p>This is the idea of network data, in which individuals are “nested” <em>within</em> larger structures, and those larger structures are nester <em>within</em> even larger structures.</p></li>
</ul>
</div>
</section></section>
<section>
<section id="live-demo" class="title-slide slide level1 center">
<h1>Live Demo 🧑🔧</h1>
</section>
<section id="overview" class="slide level2">
<h2>Overview</h2>
<p>Today you learned:</p>
<ul>
<li><p>The basics of personal network data types.</p></li>
<li><p>Data collection methods in personal network research.</p></li>
<li><p>A gentle introduction on how to build a NC protocol.</p></li>
<li><p>Different components of the Network Canvas software.</p></li>
<li><p>Recommended workflow for build a social network protocol.</p></li>
</ul>
</section>
<section id="references-and-acknowledgements" class="slide level2">
<h2>References and Acknowledgements 📚</h2>
<ul>
<li><p><a href="https://documentation.networkcanvas.com/tutorials/building-a-protocol/">Network Canvas Team Resources</a></p></li>
<li><p><a href="https://raffaelevacca.github.io/egocentric-r-book/">Ego Centric Network Analysis with R</a></p></li>
<li><p><a href="http://talks.schochastics.net/netVizR/slides.html#1">Network Visualization in R: Using ggraph and graphlayouts</a></p></li>
<li><p><a href="https://ggraph.data-imaginist.com/">ggraph: A grammar of graphics for relational data</a></p></li>
<li><p><a href="https://schochastics.github.io/R4SNA/descriptives-basic.html">R4SNA</a></p></li>
<li><p><a href="Egocentric%20Network%20Analysis:%20Foundations,%20Methods,%20and%20Models">Egocentric Network Analysis: Foundations, Methods, and Models</a></p></li>
<li><p><a href="https://www.amazon.com/Conducting-Personal-Network-Research-Methodology/dp/146253838X/ref=asc_df_146253838X/?tag=hyprod-20&linkCode=df0&hvadid=333955095017&hvpos=&hvnetw=g&hvrand=804285928416711888&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9011913&hvtargid=pla-680457968138&psc=1&mcid=4d4405c4a53e3894beb8085ea15a6e0a&tag=&ref=&adgrpid=64524924422&hvpone=&hvptwo=&hvadid=333955095017&hvpos=&hvnetw=g&hvrand=804285928416711888&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9011913&hvtargid=pla-680457968138&gclid=CjwKCAjwh4-wBhB3EiwAeJsppN_cEICV242dZ3tGxrHeLfKqaZh76H-s6jmez8BJ5sAKu8wfmnTyFRoCzhEQAvD_BwE">Conducting Personal Network Research: A Practical Guide</a></p></li>
</ul>
</section></section>
<section id="thank-you" class="title-slide slide level1 center">
<h1>Thank you! 🙏</h1>
<div class="quarto-auto-generated-content">
<div class="footer footer-default">
</div>
</div>
</section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/pdf-export/pdfexport.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/reveal-menu/menu.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/reveal-menu/quarto-menu.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/quarto-support/support.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/notes/notes.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/search/search.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/zoom/zoom.js"></script>
<script src="NC_for_Social_Network_Data_collection_files/libs/revealjs/plugin/math/math.js"></script>
<script>window.define = window.backupDefine; window.backupDefine = undefined;</script>
<script>
// Full list of configuration options available at:
// https://revealjs.com/config/
Reveal.initialize({
'controlsAuto': true,
'previewLinksAuto': false,
'pdfSeparateFragments': false,
'autoAnimateEasing': "ease",
'autoAnimateDuration': 1,
'autoAnimateUnmatched': true,
'menu': {"side":"left","useTextContentForMissingTitles":true,"markers":false,"loadIcons":false,"custom":[{"title":"Tools","icon":"<i class=\"fas fa-gear\"></i>","content":"<ul class=\"slide-menu-items\">\n<li class=\"slide-tool-item active\" data-item=\"0\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.fullscreen(event)\"><kbd>f</kbd> Fullscreen</a></li>\n<li class=\"slide-tool-item\" data-item=\"1\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.speakerMode(event)\"><kbd>s</kbd> Speaker View</a></li>\n<li class=\"slide-tool-item\" data-item=\"2\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.overview(event)\"><kbd>o</kbd> Slide Overview</a></li>\n<li class=\"slide-tool-item\" data-item=\"3\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.togglePdfExport(event)\"><kbd>e</kbd> PDF Export Mode</a></li>\n<li class=\"slide-tool-item\" data-item=\"4\"><a href=\"#\" onclick=\"RevealMenuToolHandlers.keyboardHelp(event)\"><kbd>?</kbd> Keyboard Help</a></li>\n</ul>"}],"openButton":true},
'smaller': false,
// Display controls in the bottom right corner
controls: false,
// Help the user learn the controls by providing hints, for example by
// bouncing the down arrow when they first encounter a vertical slide
controlsTutorial: false,
// Determines where controls appear, "edges" or "bottom-right"
controlsLayout: 'edges',
// Visibility rule for backwards navigation arrows; "faded", "hidden"
// or "visible"
controlsBackArrows: 'faded',
// Display a presentation progress bar
progress: true,
// Display the page number of the current slide
slideNumber: 'c/t',
// 'all', 'print', or 'speaker'
showSlideNumber: 'all',
// Add the current slide number to the URL hash so that reloading the
// page/copying the URL will return you to the same slide
hash: true,
// Start with 1 for the hash rather than 0
hashOneBasedIndex: false,
// Flags if we should monitor the hash and change slides accordingly
respondToHashChanges: true,
// Push each slide change to the browser history
history: true,
// Enable keyboard shortcuts for navigation
keyboard: true,
// Enable the slide overview mode
overview: true,
// Disables the default reveal.js slide layout (scaling and centering)
// so that you can use custom CSS layout
disableLayout: false,
// Vertical centering of slides
center: false,
// Enables touch navigation on devices with touch input
touch: true,
// Loop the presentation
loop: false,
// Change the presentation direction to be RTL
rtl: false,
// see https://revealjs.com/vertical-slides/#navigation-mode
navigationMode: 'linear',
// Randomizes the order of slides each time the presentation loads
shuffle: false,
// Turns fragments on and off globally
fragments: true,
// Flags whether to include the current fragment in the URL,
// so that reloading brings you to the same fragment position
fragmentInURL: false,
// Flags if the presentation is running in an embedded mode,
// i.e. contained within a limited portion of the screen
embedded: false,
// Flags if we should show a help overlay when the questionmark
// key is pressed
help: true,
// Flags if it should be possible to pause the presentation (blackout)
pause: true,
// Flags if speaker notes should be visible to all viewers
showNotes: false,
// Global override for autoplaying embedded media (null/true/false)
autoPlayMedia: null,
// Global override for preloading lazy-loaded iframes (null/true/false)
preloadIframes: null,
// Number of milliseconds between automatically proceeding to the
// next slide, disabled when set to 0, this value can be overwritten
// by using a data-autoslide attribute on your slides
autoSlide: 0,
// Stop auto-sliding after user input
autoSlideStoppable: true,
// Use this method for navigation when auto-sliding
autoSlideMethod: null,
// Specify the average time in seconds that you think you will spend
// presenting each slide. This is used to show a pacing timer in the
// speaker view
defaultTiming: null,
// Enable slide navigation via mouse wheel
mouseWheel: false,
// The display mode that will be used to show slides
display: 'block',
// Hide cursor if inactive
hideInactiveCursor: true,
// Time before the cursor is hidden (in ms)
hideCursorTime: 5000,
// Opens links in an iframe preview overlay
previewLinks: false,
// Transition style (none/fade/slide/convex/concave/zoom)
transition: 'none',
// Transition speed (default/fast/slow)
transitionSpeed: 'default',
// Transition style for full page slide backgrounds
// (none/fade/slide/convex/concave/zoom)
backgroundTransition: 'none',
// Number of slides away from the current that are visible
viewDistance: 3,
// Number of slides away from the current that are visible on mobile
// devices. It is advisable to set this to a lower number than
// viewDistance in order to save resources.
mobileViewDistance: 2,
// The "normal" size of the presentation, aspect ratio will be preserved
// when the presentation is scaled to fit different resolutions. Can be
// specified using percentage units.
width: 1050,
height: 700,
// Factor of the display size that should remain empty around the content
margin: 0.1,
math: {
mathjax: 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js',
config: 'TeX-AMS_HTML-full',
tex2jax: {
inlineMath: [['\\(','\\)']],
displayMath: [['\\[','\\]']],
balanceBraces: true,
processEscapes: false,
processRefs: true,
processEnvironments: true,
preview: 'TeX',
skipTags: ['script','noscript','style','textarea','pre','code'],
ignoreClass: 'tex2jax_ignore',
processClass: 'tex2jax_process'
},
},
// reveal.js plugins
plugins: [QuartoLineHighlight, PdfExport, RevealMenu, QuartoSupport,
RevealMath,
RevealNotes,
RevealSearch,
RevealZoom
]
});
</script>
<script>
// htmlwidgets need to know to resize themselves when slides are shown/hidden.
// Fire the "slideenter" event (handled by htmlwidgets.js) when the current
// slide changes (different for each slide format).
(function () {
// dispatch for htmlwidgets
function fireSlideEnter() {
const event = window.document.createEvent("Event");
event.initEvent("slideenter", true, true);
window.document.dispatchEvent(event);
}
function fireSlideChanged(previousSlide, currentSlide) {
fireSlideEnter();
// dispatch for shiny
if (window.jQuery) {
if (previousSlide) {
window.jQuery(previousSlide).trigger("hidden");
}
if (currentSlide) {
window.jQuery(currentSlide).trigger("shown");
}
}
}
// hookup for slidy
if (window.w3c_slidy) {
window.w3c_slidy.add_observer(function (slide_num) {
// slide_num starts at position 1
fireSlideChanged(null, w3c_slidy.slides[slide_num - 1]);
});
}
})();
</script>
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();