-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparallel_triangular_plates.py
58 lines (48 loc) · 1.81 KB
/
parallel_triangular_plates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import pickle
import numpy as np
from time import time
from math import tan, radians
from thermal_radiation.quadrature_2d import TriangleTensorProductGaussLegendre2D, TriangleSymmetricalGauss2D
from thermal_radiation.geometry import Triangle, get_fixed_triangle_view_factor
tensor_quad = TriangleTensorProductGaussLegendre2D(20, 20)
tensor_triangle_view_factor = get_fixed_triangle_view_factor(tensor_quad)
def apprx_parallel_directly_opposed_triangles(normalized_distance, theta, use_adaptive=False):
base = 1.0
distance = base * normalized_distance
height = tan(radians(theta)) * base
triangle1 = Triangle(
[0.0, 0.0, 0.0 ], # a
[0.0, 0.0, height], # b
[base, 0.0, 0.0 ] # c
)
triangle2 = Triangle(
[0.0, distance, 0.0 ], # a
[base, distance, 0.0 ], # b
[0.0, distance, height] # c
)
if use_adaptive:
return adaptive_triangle_view_factor(triangle1, triangle2)
else:
return tensor_triangle_view_factor(triangle1, triangle2)
def pickle_data(file_name, data):
with open(file_name, mode="wb") as pckl_file:
pickle.dump(data, pckl_file)
relative_distaces = np.linspace(0.1, 10.0, 50)
angle = 45.0
rds = []
times = []
angle_view_factors = []
for relative_distace in relative_distaces:
print(angle, relative_distace, end=" : \n")
begin = time()
view_factor = apprx_parallel_directly_opposed_triangles(relative_distace, angle)
angle_view_factors.append(view_factor)
end = time()
total = end - begin
times.append(total)
rds.append(relative_distace)
print(f"\t{view_factor:.10f} {total:.3f}")
angle_posfix = f"{angle:2.0f}.pkl"
pickle_data("view_factors_" + angle_posfix, angle_view_factors)
pickle_data("times_" + angle_posfix, times)
pickle_data("relative_dists_" + angle_posfix, rds)