-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
188 lines (132 loc) · 5.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# =============================================================================
# File: main.py
# Author: Andre Brener
# Created: 06 Jun 2017
# Last Modified: 18 Jun 2017
# Description: description
# =============================================================================
import os
import logging
import logging.config
from datetime import date, timedelta
import pandas as pd
from mails import send_recommendations_mail
from model import get_dataset, get_dataset_df, get_model
from config import config, PROJECT_DIR
from constants import (BTC_AVAILABLE, COIN_DATA_DF, FEE_PERC, MAX_BTC_BUY,
MAX_SELL_PERCENTAGE, MIN_EARNINGS)
from get_coin_data import get_price_history
from jinja_customs import load_templates
os.chdir(PROJECT_DIR)
logger = logging.getLogger('main_logger')
def get_backtest_action(X, y, model):
model_name, clf = model
decision_df = X.copy()
decision_type = clf.predict(X)
decision_df['final_decision'] = decision_type
return decision_df
def get_coin_decisions(df, backtest=True):
model = get_model(df)
df_list, backtests = get_dataset_df(df, backtest)
total_decisions_df = pd.DataFrame()
total_prices_df = pd.DataFrame()
for coin, coin_df in backtests.items():
X, y = get_dataset(coin_df)
final_df = get_backtest_action(X, y, model)
for col in ['date', 'price']:
final_df[col] = coin_df[col]
coin_decision_df = final_df[['date', 'final_decision']]
coin_prices_df = final_df[['date', 'price']]
coin_decision_df.columns = ['date', coin]
coin_prices_df.columns = ['date', coin]
if total_decisions_df.empty:
total_decisions_df = coin_decision_df
else:
total_decisions_df = pd.merge(total_decisions_df, coin_decision_df)
if total_prices_df.empty:
total_prices_df = coin_prices_df
else:
total_prices_df = pd.merge(total_prices_df, coin_prices_df)
df_list = []
for df in [total_decisions_df, total_prices_df]:
df.set_index('date', inplace=True)
df_list.append(df.T.reset_index())
return df_list
def get_action_per_coin(pred_price_change, price, coin_position):
if pred_price_change < 0:
if coin_position == 0:
return 0, 0, 0
coin_action = MAX_SELL_PERCENTAGE * coin_position * pred_price_change
btc_action = -1 * coin_action * price
pred_earnings = (btc_action *
(1 - FEE_PERC)) / (-1 * coin_action * price *
(1 + pred_price_change)) - 1
else:
btc_action = -1 * MAX_BTC_BUY * pred_price_change
coin_action = -1 * btc_action / price
pred_earnings = ((coin_action * (1 - FEE_PERC)) * price *
(1 + pred_price_change) / (-1 * btc_action)) - 1
return coin_action, btc_action, pred_earnings
def get_day_decision(day_decision_df, day_price_df):
day_decision_df.columns = ['coin', 'pred_price_change']
day_price_df.columns = ['coin', 'price']
df = pd.merge(day_decision_df, day_price_df)
df = pd.merge(df, COIN_DATA_DF)
action_results = df.apply(
lambda df: get_action_per_coin(df['pred_price_change'], df['price'], df['coin_position']),
axis=1)
action_results_df = action_results.apply(pd.Series)
action_results_df.columns = ['coin_action', 'btc_action', 'pred_earnings']
action_results_df['coin'] = df['coin']
df = pd.merge(df, action_results_df)
df = df[df['pred_earnings'] > MIN_EARNINGS]
buy_df = df[df['pred_price_change'] > 0].sort_values(
'pred_earnings', ascending=False)
sell_df = df[df['pred_price_change'] < 0].sort_values(
'pred_earnings', ascending=False)
return buy_df, sell_df
def get_daily_recommendations(starting_position, day_decision_df, day_price_df,
btc_available):
buy_df, sell_df = get_day_decision(day_decision_df, day_price_df)
btc_available += sell_df['btc_action'].sum()
buy_df['cumulative_btc'] = buy_df['btc_action'].cumsum()
buy_df['new_btc_position'] = btc_available + buy_df['cumulative_btc']
buy_df = buy_df[buy_df['new_btc_position'] > 0]
new_btc_available = btc_available + buy_df['btc_action'].sum()
total_df = pd.concat([buy_df, sell_df])
new_coin_data_df = pd.merge(
starting_position, total_df[['coin', 'coin_action']],
how='left').fillna(0)
new_coin_data_df['coin_position'] = new_coin_data_df[
'coin_position'] + new_coin_data_df['coin_action']
new_coin_data_df = new_coin_data_df[['coin', 'coin_position']]
return total_df, new_coin_data_df, new_btc_available
def main():
logger.info("Getting Coin Data")
coin_list = list(COIN_DATA_DF['coin'].unique())
end_date = date.today() - timedelta(1)
logger.info("Getting predictions")
df = get_price_history(coin_list, end_date)
total_decisions_df, total_prices_df = get_coin_decisions(
df, backtest=False)
logger.info("Predictions done")
day_cols = [
col for col in total_decisions_df.columns if 'index' not in str(col)
]
day_decision_df = total_decisions_df[['index', day_cols[-1]]]
day_price_df = total_prices_df[['index', day_cols[-1]]]
total_df, new_coin_data_df, new_btc_available = get_daily_recommendations(
COIN_DATA_DF, day_decision_df, day_price_df, BTC_AVAILABLE)
templates_dir = PROJECT_DIR + '/mail_templates'
templates = load_templates(templates_dir)
if not total_df.empty:
send_recommendations_mail(total_df, templates)
logger.info("Email Sent :)")
else:
logger.info("No Recommendations")
if __name__ == '__main__':
logging.config.dictConfig(config['logger'])
# df = pd.read_csv('historical_data.csv')
# total_decisions_df = pd.read_csv('backtest_decisions.csv')
# total_prices_df = pd.read_csv('backtest_prices.csv')
main()