-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
366 lines (267 loc) · 11.3 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import sys
import random
import signal
import warnings
from os import environ
from argparse import ArgumentParser
from contextlib import nullcontext
from functools import partial
import torch
from torch.utils.data import DataLoader
from torch.optim import Adafactor
from torch.amp import autocast
from torch.cuda import set_device, is_available as cuda_is_available, is_bf16_supported
from torch.nn.utils import clip_grad_norm_
from torch.distributed import init_process_group, destroy_process_group
from torch.distributed.fsdp import FullyShardedDataParallel, ShardingStrategy
from torch.utils.tensorboard import SummaryWriter
from torchmetrics.text import Perplexity
import tiktoken
from data import Fineweb
from model import LightGPT
from tqdm import tqdm
RANK = int(environ.get("RANK", -1))
LOCAL_RANK = int(environ.get("LOCAL_RANK", -1))
WORLD_SIZE = int(environ.get("WORLD_SIZE", -1))
IS_DDP = WORLD_SIZE > 1
IS_MASTER = RANK == 0 or not IS_DDP
DDP_BACKEND = "nccl"
def main():
parser = ArgumentParser(description="Pretrain the GPT.")
parser.add_argument(
"--dataset_subset",
default="sample-10BT",
choices=("sample-10BT", "sample-100BT", "sample-350BT", None),
)
parser.add_argument(
"--token_encoding",
default="r50k_base",
choices=("r50k_base", "p50k_base", "cl100k_base", "o200k_base"),
)
parser.add_argument("--dataset_path", default="./datasets", type=str)
parser.add_argument("--num_dataset_processes", default=8, type=int)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--gradient_accumulation_steps", default=128, type=int)
parser.add_argument("--tokens_per_sample", default=1024, type=int)
parser.add_argument("--samples_per_epoch", default=4096, type=int)
parser.add_argument("--num_epochs", default=1686, type=int)
parser.add_argument("--learning_rate", default=1e-2, type=float)
parser.add_argument("--rms_decay", default=-0.8, type=float)
parser.add_argument("--low_memory_optimizer", action="store_true")
parser.add_argument("--max_gradient_norm", default=1.0, type=float)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--embedding_dimensions", default=1024, type=int)
parser.add_argument("--num_attention_heads", default=16, type=int)
parser.add_argument("--num_hidden_layers", default=24, type=int)
parser.add_argument("--feed_forward_ratio", default=4, choices=(1, 2, 4))
parser.add_argument("--activation_checkpointing", action="store_true")
parser.add_argument("--ddp_sharding_level", default=2, choices=(0, 2, 3))
parser.add_argument("--eval_interval", default=10, type=int)
parser.add_argument("--checkpoint_interval", default=20, type=int)
parser.add_argument(
"--checkpoint_path", default="./checkpoints/checkpoint.pt", type=str
)
parser.add_argument("--resume", action="store_true")
parser.add_argument("--run_dir_path", default="./runs/pretrain", type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--seed", default=None, type=int)
args = parser.parse_args()
if args.batch_size < 1:
raise ValueError(f"Batch size must be greater than 0, {args.batch_size} given.")
if args.gradient_accumulation_steps < 1:
raise ValueError(
f"Gradient accumulation steps must be greater than 0, {args.gradient_accumulation_steps} given."
)
if args.learning_rate < 0:
raise ValueError(
f"Learning rate must be a positive value, {args.learning_rate} given."
)
if args.num_epochs < 1:
raise ValueError(f"Must train for at least 1 epoch, {args.num_epochs} given.")
if args.eval_interval < 1:
raise ValueError(
f"Eval interval must be greater than 0, {args.eval_interval} given."
)
if args.checkpoint_interval < 1:
raise ValueError(
f"Checkpoint interval must be greater than 0, {args.checkpoint_interval} given."
)
if IS_DDP:
init_process_group(backend=DDP_BACKEND, world_size=WORLD_SIZE)
args.device = f"cuda:{LOCAL_RANK}"
set_device(args.device)
if args.gradient_accumulation_steps % WORLD_SIZE != 0:
warnings.warn(
"Number of gradient accumulation steps does not"
"divide evenly into the world size."
)
args.gradient_accumulation_steps //= WORLD_SIZE
assert (
args.gradient_accumulation_steps > 0
), "World size is larger than the number of gradient accumulation steps."
if args.samples_per_epoch % WORLD_SIZE != 0:
warnings.warn(
"Number of samples per epoch does not"
"divide evenly into the world size."
)
args.samples_per_epoch //= WORLD_SIZE
assert (
args.samples_per_epoch > 0
), "World size is larger than the number of samples per epoch."
if args.seed:
args.seed += RANK
torch.set_float32_matmul_precision("high")
if "cuda" in args.device and not cuda_is_available():
raise RuntimeError("Cuda is not available.")
dtype = (
torch.bfloat16
if "cuda" in args.device and is_bf16_supported()
else torch.float32
)
amp_context = autocast(device_type=args.device, dtype=dtype)
if args.seed:
torch.manual_seed(args.seed)
random.seed(args.seed)
logger = SummaryWriter(args.run_dir_path)
tokenizer = tiktoken.get_encoding(args.token_encoding)
build_fineweb = partial(
Fineweb,
root_path=args.dataset_path,
subset=args.dataset_subset,
tokenizer=tokenizer,
tokens_per_sample=args.tokens_per_sample,
samples_per_epoch=args.samples_per_epoch,
num_processes=args.num_dataset_processes,
)
training = build_fineweb(split="train")
testing = build_fineweb(split="test")
train_loader = DataLoader(
training, batch_size=args.batch_size, pin_memory="cpu" not in args.device
)
test_loader = DataLoader(
testing, batch_size=args.batch_size, pin_memory="cpu" not in args.device
)
model_args = {
"vocabulary_size": tokenizer.n_vocab,
"embedding_dimensions": args.embedding_dimensions,
"num_heads": args.num_attention_heads,
"num_layers": args.num_hidden_layers,
"feed_forward_ratio": args.feed_forward_ratio,
"dropout": args.dropout,
"padding_index": training.PADDING_INDEX,
"eos_index": tokenizer.eot_token,
}
model = LightGPT(**model_args)
if args.activation_checkpointing:
model.enable_activation_checkpointing()
print("Compiling model")
model = torch.compile(model)
if IS_DDP:
match args.ddp_sharding_level:
case 0:
sharding_strategy = ShardingStrategy.NO_SHARD
case 2:
sharding_strategy = ShardingStrategy.SHARD_GRAD_OP
case 3:
sharding_strategy = ShardingStrategy.FULL_SHARD
model = FullyShardedDataParallel(
model,
device_id=LOCAL_RANK,
sharding_strategy=sharding_strategy,
use_orig_params=True,
)
model = model.to(args.device)
optimizer = Adafactor(
model.parameters(),
lr=args.learning_rate,
beta2_decay=args.rms_decay,
foreach=not args.low_memory_optimizer,
)
starting_epoch = 1
if args.resume:
checkpoint = torch.load(
args.checkpoint_path, map_location="cpu", weights_only=True
) # Always load into CPU RAM first to prevent CUDA out-of-memory errors.
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
starting_epoch += checkpoint["epoch"]
model = model.to(args.device)
print("Previous checkpoint resumed successfully")
model.train()
print(f"Model has {model.num_trainable_params:,} trainable parameters")
perplexity_metric = Perplexity(ignore_index=training.PADDING_INDEX).to(args.device)
register_signal_handlers()
print("Pretraining ...")
for epoch in range(starting_epoch, args.num_epochs + 1):
total_cross_entropy, total_gradient_norm = 0.0, 0.0
total_batches, total_steps = 0, 0
for step, (x, y) in enumerate(
tqdm(train_loader, desc=f"Epoch {epoch}", leave=False), start=1
):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
with amp_context:
y_pred, loss = model.forward(x, y)
scaled_loss = loss / args.gradient_accumulation_steps
sync_and_step = step % args.gradient_accumulation_steps == 0
gradient_synchronization_context = (
model.no_sync() if IS_DDP and not sync_and_step else nullcontext()
)
with gradient_synchronization_context:
scaled_loss.backward()
total_cross_entropy += loss.item()
if sync_and_step:
norm = clip_grad_norm_(model.parameters(), args.max_gradient_norm)
optimizer.step()
optimizer.zero_grad(set_to_none=True)
total_gradient_norm += norm.item()
total_steps += 1
total_batches += 1
if IS_MASTER:
average_cross_entropy = total_cross_entropy / total_batches
average_gradient_norm = total_gradient_norm / total_steps
logger.add_scalar("cross entropy", average_cross_entropy, epoch)
logger.add_scalar("gradient norm", average_gradient_norm, epoch)
print(
f"Epoch {epoch}:",
f"Cross Entropy: {average_cross_entropy:.5f},",
f"Gradient Norm: {average_gradient_norm:.4f}",
)
if epoch % args.eval_interval == 0 and IS_MASTER:
model.eval()
for x, y in tqdm(test_loader, desc="Testing", leave=False):
x = x.to(args.device, non_blocking=True)
y = y.to(args.device, non_blocking=True)
with torch.no_grad():
y_pred, _ = model.forward(x, None)
perplexity_metric.update(y_pred, y)
perplexity = perplexity_metric.compute()
logger.add_scalar("perplexity", perplexity, epoch)
print(f"Perplexity: {perplexity:.3f}")
perplexity_metric.reset()
model.train()
if epoch % args.checkpoint_interval == 0 and IS_MASTER:
checkpoint = {
"epoch": epoch,
"model_args": model_args,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"token_encoding": args.token_encoding,
}
torch.save(checkpoint, args.checkpoint_path)
print("Checkpoint saved")
if IS_DDP:
ddp_cleanup()
print("Done!")
def register_signal_handlers():
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
def shutdown(signum, frame):
print("Hold on, attempting to exit gracefully")
if IS_DDP:
ddp_cleanup()
sys.exit(0)
def ddp_cleanup():
destroy_process_group()
if __name__ == "__main__":
main()