-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtesting_load.py
57 lines (44 loc) · 1.92 KB
/
testing_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import cv2
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
def load_and_resize_image(image_path, target_size):
image = cv2.imread(image_path)
resized_image = cv2.resize(image, target_size)
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)
return resized_image
def transform_image(image):
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
tensor_image = transform(image)
return tensor_image
class SuperResolutionDataset(Dataset):
def __init__(self, hr_folder, lr_folder, pixel_hr, pixel_lr):
self.hr_folder = hr_folder
self.lr_folder = lr_folder
self.pixel_hr = pixel_hr
self.pixel_lr = pixel_lr
self.hr_images = sorted(os.listdir(hr_folder))
self.lr_images = sorted(os.listdir(lr_folder))
assert len(self.hr_images) == len(self.lr_images), "Mismatch in number of HR and LR images."
def __len__(self):
return len(self.hr_images)
def __getitem__(self, idx):
hr_img_path = os.path.join(self.hr_folder, self.hr_images[idx])
lr_img_path = os.path.join(self.lr_folder, self.lr_images[idx])
hr_resized = load_and_resize_image(hr_img_path, self.pixel_hr)
lr_resized = load_and_resize_image(lr_img_path, self.pixel_lr)
hr_tensor = transform_image(hr_resized)
lr_tensor = transform_image(lr_resized)
return hr_tensor, lr_tensor
# Function to create DataLoader
def create_dataloader(hr_folder, lr_folder, pixel_hr, pixel_lr, batch_size=1, shuffle=True):
# Create the dataset
dataset = SuperResolutionDataset(hr_folder, lr_folder, pixel_hr, pixel_lr)
# Create the DataLoader
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
return dataloader