diff --git a/docs/source/algorithms/algorithms.csv b/docs/source/algorithms/algorithms.csv index 494d58061..566df48dc 100644 --- a/docs/source/algorithms/algorithms.csv +++ b/docs/source/algorithms/algorithms.csv @@ -16,4 +16,4 @@ :ref:`AGE-MOEA `, AGEMOEA, many,, Similar to NSGA-II but estimates the shape of the Pareto-front to compute a score replacing the crowding distance. :ref:`C-TAEA `, CTAEA, many, x, An algorithm with a more sophisticated constraint-handling for many-objective optimization algoritms. :ref:`SMS-EMOA `, CTAEA, many, x, An algorithm that uses hypervolume during the environmental survival. - :ref:`RVEA `, RVEA, many, x, A reference direction based algorithm used an angle-penalized metric. \ No newline at end of file + :ref:`RVEA `, RVEA, many, , A reference direction based algorithm used an angle-penalized metric. \ No newline at end of file diff --git a/pymoo/constraints/adaptive.py b/pymoo/constraints/adaptive.py index c1dde53e3..34d1265f3 100644 --- a/pymoo/constraints/adaptive.py +++ b/pymoo/constraints/adaptive.py @@ -40,7 +40,7 @@ def __init__(self, algorithm): def _setup(self, _, **kwargs): self.evaluator = AttachConfigEvaluator(self.evaluator, self.config) - def _adapt(self, config, infills=None, **kwargs): + def _adapt_constraint_handling(self, config, infills=None, **kwargs): pass def _initialize_advance(self, infills=None, **kwargs): @@ -53,7 +53,7 @@ def _advance(self, infills=None, **kwargs): super()._advance(infills=infills, **kwargs) copy_to_dict(self.default_config, self.config) - self._adapt(self.adapted_config, infills=infills, **kwargs) + self._adapt_constraint_handling(self.adapted_config, infills=infills, **kwargs) def _infill(self): copy_to_dict(self.adapted_config, self.config) diff --git a/pymoo/constraints/eps.py b/pymoo/constraints/eps.py index eb94b0d92..31ddf581b 100644 --- a/pymoo/constraints/eps.py +++ b/pymoo/constraints/eps.py @@ -10,7 +10,7 @@ def __init__(self, algorithm, perc_eps_until=0.5): self.perc_eps_until = perc_eps_until self.max_cv = None - def _adapt(self, config, **kwargs): + def _adapt_constraint_handling(self, config, **kwargs): t = self.termination.perc alpha = np.maximum(0.0, 1 - 1 / self.perc_eps_until * t) eps = alpha * self.max_cv diff --git a/pymoo/core/algorithm.py b/pymoo/core/algorithm.py index 3a012da21..04e271b98 100644 --- a/pymoo/core/algorithm.py +++ b/pymoo/core/algorithm.py @@ -256,6 +256,7 @@ def result(self): res.pop = self.pop res.archive = self.archive + res.data = self.data # get the optimal solution found opt = self.opt diff --git a/pymoo/core/result.py b/pymoo/core/result.py index 300b6bf43..33d2b3057 100644 --- a/pymoo/core/result.py +++ b/pymoo/core/result.py @@ -36,6 +36,9 @@ def __init__(self) -> None: # the history of the optimization run is they were saved self.history = [] + # data stored within the algorithm + self.data = None + @property def cv(self): return self.CV[0]