forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gradient_cache_DPR.py
214 lines (152 loc) Β· 8.08 KB
/
train_gradient_cache_DPR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import numpy as np
import paddle
from biencoder_base_model import BiEncoder, BiEncoderNllLoss
from NQdataset import DataUtil, NQdataSetForDPR
from paddle.optimizer.lr import LambdaDecay
from paddlenlp.transformers.bert.modeling import BertModel
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", required=True, type=int, default=None)
parser.add_argument("--learning_rate", required=True, type=float, default=None)
parser.add_argument("--save_dir", required=True, type=str, default=None)
parser.add_argument("--warmup_steps", required=True, type=int)
parser.add_argument("--epoches", required=True, type=int)
parser.add_argument("--max_grad_norm", required=True, type=int)
parser.add_argument("--train_data_path", required=True, type=str)
parser.add_argument("--chunk_size", required=True, type=int)
args = parser.parse_args()
chunk_nums = args.batch_size // args.chunk_size
data_path = args.train_data_path
batch_size = args.batch_size
learning_rate = args.learning_rate
epoches = args.epoches
def dataLoader_for_DPR(batch_size, source_data: list, epochs):
index = np.arange(0, len(source_data))
np.random.shuffle(index)
batch_data = []
for i in index:
try:
batch_data.append(source_data[i])
if len(batch_data) == batch_size:
yield batch_data
batch_data = []
except Exception:
import traceback
traceback.print_exc()
continue
def get_model(model_name: str):
question_model = BertModel.from_pretrained(model_name)
context_model = BertModel.from_pretrained(model_name)
model = BiEncoder(question_model, context_model)
return model
model = get_model("bert-base-uncased")
def get_linear_scheduler(warmup_steps, training_steps):
def lr_lambda(current_step):
if current_step < warmup_steps:
return float(current_step) / float(max(1, warmup_steps))
return max(0.0, float(training_steps - current_step) / float(max(1, training_steps - warmup_steps)))
return LambdaDecay(learning_rate=args.learning_rate, lr_lambda=lr_lambda, last_epoch=-1, verbose=False)
training_steps = 58880 * args.epoches / args.batch_size
scheduler = get_linear_scheduler(args.warmup_steps, training_steps)
optimizer = paddle.optimizer.AdamW(learning_rate=scheduler, parameters=model.parameters())
def get_dataset(data_path: str):
data = NQdataSetForDPR(data_path)
dataset = data.new_data
return dataset
util = DataUtil()
LOSS = BiEncoderNllLoss()
batch_data = []
dataset = get_dataset(data_path)
def train():
for epoch in range(epoches):
index = np.arange(0, len(dataset))
np.random.shuffle(index)
batch_data = []
for i in index:
# dataLoader
batch_data.append(dataset[i])
if len(batch_data) == batch_size:
all_questions = []
all_contexts = []
all_batch_input = util.create_biencoder_input(batch_data, inserted_title=True)
all_positions = all_batch_input.is_positive
all_inputs_questions_id = all_batch_input.questions_ids
all_inputs_questions_segment = all_batch_input.question_segments
all_inputs_contexts_id = all_batch_input.context_ids
all_inputs_contexts_segment = all_batch_input.ctx_segments
sub_q_ids = paddle.split(all_inputs_questions_id, chunk_nums, axis=0)
sub_c_ids = paddle.split(all_inputs_contexts_id, chunk_nums, axis=0)
sub_q_segments = paddle.split(all_inputs_questions_segment, chunk_nums, axis=0)
sub_c_segments = paddle.split(all_inputs_contexts_segment, chunk_nums, axis=0)
all_questions = []
all_contexts = []
all_CUDA_rnd_state_question = []
all_CUDA_rnd_state_context = []
for sub_q_id, sub_q_segment in zip(sub_q_ids, sub_q_segments):
with paddle.no_grad():
sub_CUDA_rnd_state = paddle.framework.random.get_cuda_rng_state()
all_CUDA_rnd_state_question.append(sub_CUDA_rnd_state)
sub_question_output = model.get_question_pooled_embedding(sub_q_id, sub_q_segment)
all_questions.append(sub_question_output)
for sub_c_id, sub_c_segment in zip(sub_c_ids, sub_c_segments):
with paddle.no_grad():
sub_CUDA_rnd_state = paddle.framework.random.get_cuda_rng_state()
all_CUDA_rnd_state_context.append(sub_CUDA_rnd_state)
sub_context_output = model.get_context_pooled_embedding(sub_c_id, sub_c_segment)
all_contexts.append(sub_context_output)
model_questions = paddle.concat(all_questions, axis=0)
all_questions = []
model_questions = model_questions.detach()
model_questions.stop_gradient = False
model_contexts = paddle.concat(all_contexts, axis=0)
model_contexts = model_contexts.detach()
model_contexts.stop_gradient = False
all_contexts = []
model_positions = all_positions
loss, _ = LOSS.calc(model_questions, model_contexts, model_positions)
print("loss is:")
print(loss.item())
loss.backward()
grads_for_questions = paddle.split(model_questions.grad, chunk_nums, axis=0)
grads_for_contexts = paddle.split(model_contexts.grad, chunk_nums, axis=0)
for sub_q_id, sub_q_segment, CUDA_state, grad_for_each_question in zip(
sub_q_ids, sub_q_segments, all_CUDA_rnd_state_question, grads_for_questions
):
paddle.framework.random.set_cuda_rng_state(CUDA_state)
sub_question_output = model.get_question_pooled_embedding(sub_q_id, sub_q_segment)
finally_question_res_for_backward = paddle.dot(sub_question_output, grad_for_each_question)
finally_question_res_for_backward = finally_question_res_for_backward * (1 / 8.0)
finally_question_res_for_backward.backward(retain_graph=True)
for sub_c_id, sub_c_segment, CUDA_state, grad_for_each_context in zip(
sub_c_ids, sub_c_segments, all_CUDA_rnd_state_context, grads_for_contexts
):
paddle.framework.random.set_cuda_rng_state(CUDA_state)
sub_context_output = model.get_context_pooled_embedding(sub_c_id, sub_q_segment)
finally_context_res_for_backward = paddle.dot(sub_question_output, grad_for_each_context)
finally_context_res_for_backward = finally_context_res_for_backward * (1 / 8.0)
finally_context_res_for_backward.backward(retain_graph=True)
paddle.nn.ClipGradByGlobalNorm(clip_norm=args.max_grad_norm, group_name=model.parameters())
optimizer.step()
scheduler.step()
optimizer.clear_grad()
batch_data = []
EPOCH = str(epoch)
save_path_que = args.save_dir + "/question_model_" + EPOCH
save_path_con = args.save_dir + "/context_model_" + EPOCH
model.question_encoder.save_pretrained(save_path_que)
model.context_encoder.save_pretrained(save_path_con)
if __name__ == "__main__":
train()