-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComplex.java
161 lines (139 loc) · 4.57 KB
/
Complex.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
package android.ilus.spltest.android.ilus;
public class Complex
{
private final double re; // the real part
private final double im; // the imaginary part
// create a new object with the given real and imaginary parts
public Complex(double real, double imag)
{
re = real;
im = imag;
}
// return a string representation of the invoking Complex object
public String toString()
{
if (im == 0)
return re + "";
if (re == 0)
return im + "i";
if (im < 0)
return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
// return abs/modulus/magnitude and angle/phase/argument
public double abs()
{
return Math.hypot(re, im);
} // Math.sqrt(re*re + im*im)
public double phase()
{
return Math.atan2(im, re);
} // between -pi and pi
// return a new Complex object whose value is (this + b)
public Complex plus(Complex b)
{
Complex a = this; // invoking object
double real = a.re + b.re;
double imag = a.im + b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this - b)
public Complex minus(Complex b)
{
Complex a = this;
double real = a.re - b.re;
double imag = a.im - b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this * b)
public Complex times(Complex b)
{
Complex a = this;
double real = a.re * b.re - a.im * b.im;
double imag = a.re * b.im + a.im * b.re;
return new Complex(real, imag);
}
// scalar multiplication
// return a new object whose value is (this * alpha)
public Complex times(double alpha)
{
return new Complex(alpha * re, alpha * im);
}
// return a new Complex object whose value is the conjugate of this
public Complex conjugate()
{
return new Complex(re, -im);
}
// return a new Complex object whose value is the reciprocal of this
public Complex reciprocal()
{
double scale = re * re + im * im;
return new Complex(re / scale, -im / scale);
}
// return the real or imaginary part
public double re()
{
return re;
}
public double im()
{
return im;
}
// return a / b
public Complex divides(Complex b)
{
Complex a = this;
return a.times(b.reciprocal());
}
// return a new Complex object whose value is the complex exponential of
// this
public Complex exp()
{
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re)
* Math.sin(im));
}
// return a new Complex object whose value is the complex sine of this
public Complex sin()
{
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex cosine of this
public Complex cos()
{
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex tangent of this
public Complex tan()
{
return sin().divides(cos());
}
// a static version of plus
public static Complex plus(Complex a, Complex b)
{
double real = a.re + b.re;
double imag = a.im + b.im;
Complex sum = new Complex(real, imag);
return sum;
}
// sample client for testing
public static void main(String[] args)
{
Complex a = new Complex(5.0, 6.0);
Complex b = new Complex(-3.0, 4.0);
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("Re(a) = " + a.re());
System.out.println("Im(a) = " + a.im());
System.out.println("b + a = " + b.plus(a));
System.out.println("a - b = " + a.minus(b));
System.out.println("a * b = " + a.times(b));
System.out.println("b * a = " + b.times(a));
System.out.println("a / b = " + a.divides(b));
System.out.println("(a / b) * b = " + a.divides(b).times(b));
System.out.println("conj(a) = " + a.conjugate());
System.out.println("|a| = " + a.abs());
System.out.println("tan(a) = " + a.tan());
}
}