-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
30 lines (29 loc) · 1.05 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from scipy.signal import fftconvolve
from python_speech_features import sigproc
from torch.utils.data import Dataset
import scipy.io.wavfile as sciwav
import torch, numpy as np
class WavDataset(Dataset):
def __init__(self, wav_scp,norm_type):
self.wav_scp = wav_scp
self.norm_type = norm_type
def __len__(self):
return len(self.wav_scp)
def _load_data(self, filename):
sr, signal = sciwav.read(filename, mmap=True)
return signal
def _norm_speech(self, signal):
if np.std(signal) == 0:
return signal
if self.norm_type == 'std':
signal = (signal - np.mean(signal)) / np.std(signal)
else:
signal = signal / (np.abs(signal).max()+ 1e-4)
return signal
def __getitem__(self, idx):
utt, filename = self.wav_scp[idx]
signal = self._load_data(filename)
signal = self._norm_speech(signal)
signal = sigproc.preemphasis(signal, 0.97)
signal = torch.from_numpy(signal.astype('float32'))
return signal, utt