-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPlonkSimonsCorrected.tex
522 lines (347 loc) · 15.6 KB
/
PlonkSimonsCorrected.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
\documentclass[shadesubsections,trans,14pt,mathserif]{beamer}
\usepackage[danish]{babel}
%\usepackage[T1]{fontenc}
%\usepackage{fourier}
% Dokumentets sprog
%\usepackage{mathtools}
%\usepackage{pxfonts}
\usepackage{eulervm}
% Class options include: notes, notesonly, handout, trans,
% hidesubsections, shadesubsections,
% inrow, blue, red, grey, brown
% Theme for beamer presentation.
%\usepackage{beamertheme}
% Other themes include: beamerthemebars, beamerthemelined,
% beamerthemetree, beamerthemetreebars
\newcommand{\adv}{\ensuremath{\mathcal A}}
\newcommand{\F}{\ensuremath{\mathbb F}}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}}
\newcommand{\sett}[2]{\ensuremath{\left\{#1\right\}_{#2}}}
\newcommand{\enc}[1]{\ensuremath{\left[#1\right ]}}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}}
\newcommand{\open}[1]{\ensuremath{\mathsf{open}(#1)}}
\newcommand{\verify}[1]{\ensuremath{\mathsf{verify}(#1)}}
\newcommand{\defeq}{\ensuremath{:=}}
\newcommand{\helper}{\ensuremath{\mathcal{H}}}
\newcommand{\ver}{\ensuremath{\mathcal{V}}}
\newcommand{\prv}{\ensuremath{\mathcal{P}}}
\newcommand{\polysofdeg}[1]{\F_{< #1}[X]}
\newcommand{\polys}{\F[X]}
\newcommand{\acc}{{\mathbf{acc}}}
\newcommand{\ideal}{\mathbf{I}}
\newcommand{\gen}{\alpha}
%\setbeamersize{text margin left=3mm,text margin right=3mm}
\title{\large{PLONK: Permutations over Lagrange-Bases for Oecumenical Noninteractive arguments of Knowledge}} % Enter your title between curly braces
\author{\small{Ariel Gabizon}\\ % Enter your name between curly braces
\tt{\footnotesize{Zeta Function Technologies} } } % Enter your institute name between curly braces
\date{} % Enter the date or \today between curly braces
%\usefonttheme{professionalfonts}
%\usefonttheme[onlymath]{serif}
\begin{document}
\boldmath
% Creates title page of slide show using above information
\begin{frame}
\titlepage
\end{frame}
\note{Talk for 30 minutes} % Add notes to yourself that will be displayed when
% typeset with the notes or notesonly class options
%\section[Outline]{}
% Creates table of contents slide incorporating
% all \section and \subsection commands
%\begin{frame}
%\tableofcontents
%\end{frame}
\begin{frame}
\frametitle{Prelude: Trusted setups for pairing-based SNARKs} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{itemize}
\item Want to prove statements about circuit satisfiability
\item Generate CRS of elements $g^{P(s)}$ for secret $s\in \F$ nobody knows, for some polynomials $P$ (potentially depending on circuit).
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Prelude: Trusted setups for pairing-based SNARKs} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{itemize}
\item Want to prove statements about circuit satisfiability
\item Generate CRS of elements $g^{P(s)}$ for secret $s\in \F$ nobody knows, for some polynomials $P$ (potentially depending on circuit).
\item If CRS only contains elements $g^{s^i}$ setup is \textbf{universal and updatable}.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Plonk in two sips} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{enumerate}
%\item The protocol definition includes a set of \emph{preprocessed polynomials} $g_1,\ldots,g_\ell \in \polysofdeg{d}$.
\item All you need is a permutation check.\pause
\item Permutations are easier to check on mutliplicative subgroups
\end{enumerate}
\end{frame}
\begin{frame}
\large{Part 1: All you need is a permutation check}\\
\vspace{0.2in}
\normalsize{\textbf{Our setting:} want short proofs about fan-in 2 unlimited fan-out circuits, trusted setup is updatable depends only on circuit size.}
\end{frame}
\begin{frame}
\textbf{example:} Prove knowledge of $a,b,c$ with
\[(a+b)\cdot c =7\]
\end{frame}
\begin{frame}
Left values:
$l_1,l_2$\\
Right values: $r_1,r_2$\\
Output values:
$o_1,o_2$
\vspace{0.2in}
\end{frame}
\begin{frame}
Left values:
$l_1,l_2$\\
Right values: $r_1,r_2$\\
Output values:
$o_1,o_2$
\vspace{0.2in}
Gate checks:
$l_1 + r_1 = o_1 , l_2\cdot r_2 = o_2$
Wire/copy checks:
$o_1 = l_2$
Public input checks: $o_2=7$.
\end{frame}
\begin{frame}
% Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Left values:
$l_1,l_2$\\
Right values: $r_1,r_2$\\
Output values:
$o_1,o_2$
\vspace{0.2in}
Gate checks:
$l_1 + r_1 = o_1 , l_2\cdot r_2 = o_2$\;\;\textbf{\small{(easy)}}
Wire/copy checks:
$o_1 = l_2$\;\;\textbf{\small{(hard)}}
Public input checks: $o_2=7$ \textbf{\small{(easy)}}
\end{frame}
\begin{frame}
\frametitle{Copy checks with permutations\\ \normalsize{similar to [Groth09,BCGGHJ17]}} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\[V= (l_1,l_2,r_1,r_2,o_1,o_2)\]
\end{frame}
\begin{frame}
\frametitle{Copy checks with permutations\\ \normalsize{similar to [Groth09,BCGGHJ17]}} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\[V= (l_1,l_2,r_1,r_2,o_1,o_2)\]
$o_1=l_2$ iff $V=\sigma(V)$ \\
For permutation $\sigma = (25)$
\end{frame}
\begin{frame}
\large{Part 2: Permutations are easier to check on mutliplicative subgroups
}
\end{frame}
\begin{frame}
\frametitle{{\normalsize{[Bayer-Groth12]}} - perm checks with products} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{example:} Given $a,b\in \F^3$, want to check $(b_1,b_2,b_3) = (a_3,a_1,a_2)$ \\
\end{frame}
\begin{frame}
\frametitle{{\normalsize{[Bayer-Groth12]}} - perm checks with products} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{example:} Given $a,b\in \F^3$, want to check $(b_1,b_2,b_3) = (a_3,a_1,a_2)$ \\
\vspace{0.2in}
\textbf{step 1:} Choose random $\beta\in \F$. Let
\[a'_1 = a_1 + \beta, a'_2 = a_2 + 2\beta, a'_3 = a_3 + 3\beta\]
\[b'_1 = b_1 + 3\beta, b'_2 = b_2 + \beta, b'_3 = b_3 + 2\beta\]
\vspace{0.2in}
\end{frame}
\begin{frame}
\frametitle{{\normalsize{[Bayer-Groth12]}} - perm checks with products} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{example:} Given $a,b\in \F^3$, want to check $(b_1,b_2,b_3) = (a_3,a_1,a_2)$ \\
\vspace{0.2in}
\textbf{step 1:} Choose random $\beta\in \F$. Let
\[a'_1 = a_1 + \beta, a'_2 = a_2 + 2\beta, a'_3 = a_3 + 3\beta\]
\[b'_1 = b_1 + 3\beta, b'_2 = b_2 + \beta, b'_3 = b_3 + 2\beta\]
\vspace{0.2in}
If claim false - w.h.p as mutliset $\set{a'_1,a'_2,a'_3}\neq \set{b'_1,b'_2,b'_3}$:
\end{frame}
\begin{frame}
\frametitle{{\normalsize{[Bayer-Groth12]}} - reducing permutation checks to products} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{step 2:} Choose random $\gamma\in \F$. Let
\[a''_i=a'_i +\gamma, b''_i = b_i + \gamma\]
\vspace{0.2in}
\end{frame}
\begin{frame}
\frametitle{{\normalsize{[Bayer-Groth12]}} - reducing permutation checks to products} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{step 2:} Choose random $\gamma\in \F$. Let
\[a''_i=a'_i +\gamma, b''_i = b'_i + \gamma\]
\vspace{0.2in}
If $\set{a'_1,a'_2,a'_3}\neq \set{b'_1,b'_2,b'_3}$ as multiset - w.h.p \[a''_1\cdot a''_2\cdot a''_3 \neq b''_1\cdot b''_2\cdot b''_3.\]
\end{frame}
% \begin{frame}
% \textbf{Feel life is too short to constantly cite the Schwartz-Zippel Lemma?}
% \end{frame}
%
\begin{frame}
\frametitle{Idealized Polynomials Protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{Preprocessing:} $\ver$ chooses polynomials $g_1,\ldots,g_t\in \polysofdeg{d}$.\\
\vspace{0.4in}
\textbf{Protocol:}
\begin{enumerate}
%\item The protocol definition includes a set of \emph{preprocessed polynomials} $g_1,\ldots,g_\ell \in \polysofdeg{d}$.
\item
$\prv$'s msgs are to ideal party $\ideal$. Must be $f_i\in \polysofdeg{d}$.
\item At protocol end $\ver$ asks $\ideal$ if some identities hold between $\set{f_1,\ldots,f_\ell,g_1,\ldots,g_t}$. Outputs $\acc$ iff they do.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Idealized Polynomials Protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{Preprocessing:} $\ver$ chooses polynomials $g_1,\ldots,g_t\in \polysofdeg{d}$.\\
\vspace{0.2in}
\textbf{Protocol:}
\begin{enumerate}
%\item The protocol definition includes a set of \emph{preprocessed polynomials} $g_1,\ldots,g_\ell \in \polysofdeg{d}$.
\item $\prv$'s msgs are to ideal party $\ideal$. Must be $f_i\in \polysofdeg{d}$.
\item At end, $\ver$ asks $\ideal$ if some identities hold between $\set{f_1,\ldots,f_\ell,g_1,\ldots,g_t}$.
\end{enumerate}
\emph{Using [KZG10], can compile to real protocol with each msg of $\prv$ being 32-64 bytes according to your NFSPL.}
\end{frame}
% \begin{frame}
% \textbf{Feel life is too short to constantly cite the fundamental thm of Algebra?}
% \end{frame}
\begin{frame}
\frametitle{$H$-ranged Polynomials Protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\textbf{Preprocessing:} $\ver$ chooses polynomials $g_1,\ldots,g_t\in \polysofdeg{d}$, $H\subset\F$.\\
\vspace{0.4in}
\textbf{Protocol:}
\begin{enumerate}
%\item The protocol definition includes a set of \emph{preprocessed polynomials} $g_1,\ldots,g_\ell \in \polysofdeg{d}$.
\item $\prv$'s msgs are to ideal party $\ideal$. Must be $f_i\in \polysofdeg{d}$.
\item At end, $\ver$ asks $\ideal$ if some identities hold between $\set{f_1,\ldots,f_\ell,g_1,\ldots,g_t}$ \textbf{\textit{on $H$}}.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{$H$-ranged protocol using polynomial protocol:} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
$\ver$ wants to check identities $P_1,P_2$ on $H$.\\
\vspace{0.2in}
\begin{itemize}
\item After $\prv$ finished sending \set{f_i}, $\ver$ sends random $a_1,a_2\in \F$.\\
\item $\prv$ sends $T\in \polysofdeg{d}$.\\
\item $\ver$ checks identity
$a_1\cdot P_1 + a_2\cdot P_2 \equiv T\cdot Z_H$.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Checking permutations with $H$-ranged protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
Permutation $\sigma: [n]\to [n]$.
$H=\set{\gen,\gen^2,\ldots,\gen^n}$.\\
\vspace{0.2in}
$\prv$ has sent $f\in \polysofdeg{d}$.\\
\vspace{0.2in}
Wants to prove $f=\sigma(f)$:
\[\forall i\in [n], f(\gen^i) = f(\gen^{\sigma(i)})\]
\end{frame}
\begin{frame}
\frametitle{Using [BG12] reduces to:} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
$H=\set{\gen,\gen^2,\ldots,\gen^n}$.\\
\vspace{0.2in}
$\prv$ has sent $f,g\in \polysofdeg{d}$.\\
\vspace{0.2in}
Wants to prove:
\[\prod_{i\in [n]} f(\gen^i) = \prod_{i\in [n]} g(\gen^i)\]
\end{frame}
\begin{frame}
\frametitle{Checking products with $H$-ranged protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{enumerate}
\item $\prv$ computes $Z$ with
$ Z(\gen)=1, Z(\gen^i) = \prod_{j<i} f(\gen^j)/g(\gen^j)$, {\small{$i=2..n+1$}}.
\item Sends $Z$ to $\ideal$.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{Checking products with $H$-ranged protocols} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\begin{enumerate}
\item $\prv$ computes $Z$ with
$ Z(\gen)=1, Z(\gen^i) = \prod_{j<i} f(\gen^j)/g(\gen^j)$.
\item Sends $Z$ to $\ideal$.
\item $\ver$ checks following identities on $H$.
\begin{enumerate}
\item $L_1(X) (Z(X)-1) =0$
\item $Z(X) f(X) = Z(\gen\cdot X)g(X)$
\item $L_n(X) (Z(\gen\cdot X) -1)=0$
\end{enumerate}
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{The bottom line {\normalsize{(on BLS-381 curve)}}} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
600 byte proofs with one trusted setup for all fan-in two circuits of $n$ gates.\\
\vspace{0.2in}
Prover does $11n$ $G_1$ exp {\small{(or $9n$ $G_1$ exp with 700 byte proof)}}.\\
\vspace{0.2in}
For batch of proofs on same circuit only $3n$ $G_1$ exp and $240$ bytes for each additional proof.
\end{frame}
\begin{frame}
\large{Bonus material: The KZG polynomial commitment scheme
}
\end{frame}
\begin{frame}
SRS: \enc{1},\enc{x},\ldots,\enc{x^d}, for random $x\in \F$.\\
\vspace{0.4in}
$f(X) = \sum_{i=0}^d a_i X^i$\\
\vspace{0.4in}
$\cm(f)\defeq \sum_{i=0}^d a_i \enc{x^i}= \enc{f(x)}$\\
\vspace{0.4in}
\end{frame}
\begin{frame}
SRS: \enc{1},\enc{x},\ldots,\enc{x^d},\\
for random $x\in \F$.
\vspace{0.4in}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$
\vspace{0.4in}
\end{frame}
%
% \begin{frame}
% $\cm(f)\defeq \enc{f(x)}$\\
% \vspace{0.4in}
% $\open{f,i}\defeq \enc{h(x)}$, where
% $h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
% \vspace{0.4in}
% \textbf{exercise} - using pairing, define:\\
% \vspace{0.2in}
% $\verify{\cm,\pi,z,i}$,
% where $z$ is allegedly $f(i)$
% \end{frame}
\begin{frame}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
\vspace{0.4in}
$\verify{\cm,\pi,z,i}:$
\[e(\cm-\enc{z},\enc{1}) \stackrel{?}{=} e(\pi, \enc{x-i})\]
\end{frame}
\begin{frame}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
\vspace{0.4in}
$\verify{\cm,\pi,z,i}:$
\[e(\cm-\enc{z},\enc{1}) \stackrel{?}{=} e(\pi, \enc{x-i})\]
\vspace{0.4in}
\textbf{Thm}{\footnotesize{[KZG,MBKM]}}: \emph{This works in the Algebraic Group Model.}
\end{frame}
\end{document}